Oxetane Substrates of Human Microsomal Epoxide Hydrolase. 2017

Francesca Toselli, and Marlene Fredenwall, and Peder Svensson, and Xue-Qing Li, and Anders Johansson, and Lars Weidolf, and Martin A Hayes
Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development, AstraZeneca, Mölndal, Sweden (F.T., M.F., X.-Q.L., A.J., L.W., M.A.H.); and Integrative Research Laboratories, Arvid Wallgrens Backe 20, Gothenburg, Sweden (P.S.).

Oxetanyl building blocks are increasingly used in drug discovery because of the improved drug-like properties they confer on drug candidates, yet little is currently known about their biotransformation. A series of oxetane-containing analogs was studied and we provide the first direct evidence of oxetane hydrolysis by human recombinant microsomal epoxide hydrolase (mEH). Incubations with human liver fractions and hepatocytes were performed with and without inhibitors of cytochrome P450 (P450), mEH and soluble epoxide hydrolase (sEH). Reaction dependence on NADPH was investigated in subcellular fractions. A full kinetic characterization of oxetane hydrolysis is presented, in both human liver microsomes and human recombinant mEH. In human liver fractions and hepatocytes, hydrolysis by mEH was the only oxetane ring-opening metabolic route, with no contribution from sEH or from cytochrome P450-catalyzed oxidation. Minimally altering the structural elements in the immediate vicinity of the oxetane can greatly modulate the efficiency of hydrolytic ring cleavage. In particular, higher pKa in the vicinity of the oxetane and an increased distance between the oxetane ring and the benzylic nitrogen improve reaction rate, which is further enhanced by the presence of methyl groups near or on the oxetane. This work defines oxetanes as the first nonepoxide class of substrates for human mEH, which was previously known to catalyze the hydrolytic ring opening of electrophilic and potentially toxic epoxide-containing drugs, drug metabolites, and exogenous organochemicals. These findings will be of value for the development of biologically active oxetanes and may be exploited for the biocatalytic generation of enantiomerically pure oxetanes and diols.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004851 Epoxide Hydrolases Enzymes that catalyze reversibly the formation of an epoxide or arene oxide from a glycol or aromatic diol, respectively. Epoxide Hydrase,Epoxide Hydrases,Epoxide Hydratase,Epoxide Hydratases,Epoxide Hydrolase,9,10-Epoxypalmitic Acid Hydrase,Microsomal Epoxide Hydrolase,Styrene Epoxide Hydrolase,9,10 Epoxypalmitic Acid Hydrase,Acid Hydrase, 9,10-Epoxypalmitic,Epoxide Hydrolase, Microsomal,Epoxide Hydrolase, Styrene,Hydrase, 9,10-Epoxypalmitic Acid,Hydrase, Epoxide,Hydrases, Epoxide,Hydratase, Epoxide,Hydratases, Epoxide,Hydrolase, Epoxide,Hydrolase, Microsomal Epoxide,Hydrolase, Styrene Epoxide,Hydrolases, Epoxide
D004988 Ethers, Cyclic Compounds of the general formula R-O-R arranged in a ring or crown formation. Cyclic Ether,Cyclic Ethers,Ether, Cyclic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D022781 Hepatocytes The main structural component of the LIVER. They are specialized EPITHELIAL CELLS that are organized into interconnected plates called lobules. Hepatic Cells,Cell, Hepatic,Cells, Hepatic,Hepatic Cell,Hepatocyte

Related Publications

Francesca Toselli, and Marlene Fredenwall, and Peder Svensson, and Xue-Qing Li, and Anders Johansson, and Lars Weidolf, and Martin A Hayes
August 2016, Drug metabolism and disposition: the biological fate of chemicals,
Francesca Toselli, and Marlene Fredenwall, and Peder Svensson, and Xue-Qing Li, and Anders Johansson, and Lars Weidolf, and Martin A Hayes
May 1981, The Journal of biological chemistry,
Francesca Toselli, and Marlene Fredenwall, and Peder Svensson, and Xue-Qing Li, and Anders Johansson, and Lars Weidolf, and Martin A Hayes
January 1981, Methods in enzymology,
Francesca Toselli, and Marlene Fredenwall, and Peder Svensson, and Xue-Qing Li, and Anders Johansson, and Lars Weidolf, and Martin A Hayes
April 1994, The Journal of pharmacology and experimental therapeutics,
Francesca Toselli, and Marlene Fredenwall, and Peder Svensson, and Xue-Qing Li, and Anders Johansson, and Lars Weidolf, and Martin A Hayes
April 1997, European journal of biochemistry,
Francesca Toselli, and Marlene Fredenwall, and Peder Svensson, and Xue-Qing Li, and Anders Johansson, and Lars Weidolf, and Martin A Hayes
January 2010, Molecular medicine reports,
Francesca Toselli, and Marlene Fredenwall, and Peder Svensson, and Xue-Qing Li, and Anders Johansson, and Lars Weidolf, and Martin A Hayes
April 1998, Pharmacogenetics,
Francesca Toselli, and Marlene Fredenwall, and Peder Svensson, and Xue-Qing Li, and Anders Johansson, and Lars Weidolf, and Martin A Hayes
January 1980, Annales de biologie clinique,
Francesca Toselli, and Marlene Fredenwall, and Peder Svensson, and Xue-Qing Li, and Anders Johansson, and Lars Weidolf, and Martin A Hayes
November 2004, Chemico-biological interactions,
Francesca Toselli, and Marlene Fredenwall, and Peder Svensson, and Xue-Qing Li, and Anders Johansson, and Lars Weidolf, and Martin A Hayes
July 2011, Analytical biochemistry,
Copied contents to your clipboard!