Metal-nucleotide structural characteristics during catalysis by beef heart mitochondrial F1. 1985

K J Gruys, and J L Urbauer, and S M Schuster

This study examined the nature of the metal-nucleotide complexes which serve as substrates, products, and intermediates in the beef heart mitochondrial ATPase reaction. The two methods employed involved the use of phosphorothioate ATP analogs as substrates in the presence of Mg2+ or Cd2+ and the use of substitution inert Cr X ATP complexes (the isolated diastereomers of the bidentate complexes) along with the newly synthesized Cr X ITP complexes as inhibitors of both the F1-ATPase and F1-ITPase activities. Little stereoselectivity was observed in the inhibition of F1-ATPase and F1-ITPase activities by the isolated diastereomers of beta,gamma-bidentate CrATP, while the inhibition by the delta,alpha,beta-bidentate CrADP diastereomer was greater than that of the lambda epimer. gamma-Monodentate CrITP was a weak inhibitor of both the ATPase and ITPase activities, whereas beta,gamma-bidentate CrITP failed to show any inhibition at all up to a concentration of 3.2 mM. When adenosine 5'-O-(2-thiotriphosphate) (ATP beta S) was used as the substrate, (VmSp]/(Vm(Rp] with Mg2+ present was 2.7 at 31 degrees C and 3.5 at 13 degrees C. The (Vm/Km(Sp]/(Vm/Km(Rp] ratios with Mg2+ present were 15.3 at 31 degrees C and 73.3 at 13 degrees C. With Cd2+ present, the (Vm(Sp]/(Vm(Rp] ratios were 0.81 and 0.65 at 31 and 13 degrees C, respectively. The (Vm/Km(Sp]/(Vm/Km(Rp] ratios with Cd2+ present were 1.17 at 31 degrees C and 1.34 at 13 degrees C. The large activation energy observed for the isomers of CdATP beta S was not observed for MgATP beta S, MgATP, or CdATP. The Vm for Cd adenosine 5'-O-thiotriphosphate (ATP gamma S) hydrolysis was the largest of all the metal-phosphorothioate nucleotide complexes, while that for MgATP gamma S was the smallest. The results are interpreted in terms of a catalytic model for F1-catalyzed nucleotide hydrolysis describing metal-nucleotide chelation during the reaction.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008929 Mitochondria, Heart The mitochondria of the myocardium. Heart Mitochondria,Myocardial Mitochondria,Mitochondrion, Heart,Heart Mitochondrion,Mitochondria, Myocardial
D002104 Cadmium An element with atomic symbol Cd, atomic number 48, and atomic weight 112.41. It is a metal and ingestion will lead to CADMIUM POISONING.
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K J Gruys, and J L Urbauer, and S M Schuster
November 1987, Archives of biochemistry and biophysics,
K J Gruys, and J L Urbauer, and S M Schuster
January 1992, Biochemical and biophysical research communications,
K J Gruys, and J L Urbauer, and S M Schuster
April 1991, Biochemistry and cell biology = Biochimie et biologie cellulaire,
K J Gruys, and J L Urbauer, and S M Schuster
February 1984, FEBS letters,
K J Gruys, and J L Urbauer, and S M Schuster
February 1980, Biochimica et biophysica acta,
K J Gruys, and J L Urbauer, and S M Schuster
March 1984, The Journal of biological chemistry,
K J Gruys, and J L Urbauer, and S M Schuster
November 1979, Biochemical and biophysical research communications,
K J Gruys, and J L Urbauer, and S M Schuster
December 1997, The Journal of biological chemistry,
K J Gruys, and J L Urbauer, and S M Schuster
May 1985, The Journal of biological chemistry,
K J Gruys, and J L Urbauer, and S M Schuster
November 1993, The Journal of biological chemistry,
Copied contents to your clipboard!