Joint analysis of interval-censored failure time data and panel count data. 2018

Da Xu, and Hui Zhao, and Jianguo Sun
Center for Applied Statistical Research, School of Mathematics, Jilin University, Changchun, 130012, China.

Interval-censored failure time data and panel count data are two types of incomplete data that commonly occur in event history studies and many methods have been developed for their analysis separately (Sun in The statistical analysis of interval-censored failure time data. Springer, New York, 2006; Sun and Zhao in The statistical analysis of panel count data. Springer, New York, 2013). Sometimes one may be interested in or need to conduct their joint analysis such as in the clinical trials with composite endpoints, for which it does not seem to exist an established approach in the literature. In this paper, a sieve maximum likelihood approach is developed for the joint analysis and in the proposed method, Bernstein polynomials are used to approximate unknown functions. The asymptotic properties of the resulting estimators are established and in particular, the proposed estimators of regression parameters are shown to be semiparametrically efficient. In addition, an extensive simulation study was conducted and the proposed method is applied to a set of real data arising from a skin cancer study.

UI MeSH Term Description Entries
D012044 Regression Analysis Procedures for finding the mathematical function which best describes the relationship between a dependent variable and one or more independent variables. In linear regression (see LINEAR MODELS) the relationship is constrained to be a straight line and LEAST-SQUARES ANALYSIS is used to determine the best fit. In logistic regression (see LOGISTIC MODELS) the dependent variable is qualitative rather than continuously variable and LIKELIHOOD FUNCTIONS are used to find the best relationship. In multiple regression, the dependent variable is considered to depend on more than a single independent variable. Regression Diagnostics,Statistical Regression,Analysis, Regression,Analyses, Regression,Diagnostics, Regression,Regression Analyses,Regression, Statistical,Regressions, Statistical,Statistical Regressions
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003627 Data Interpretation, Statistical Application of statistical procedures to analyze specific observed or assumed facts from a particular study. Data Analysis, Statistical,Data Interpretations, Statistical,Interpretation, Statistical Data,Statistical Data Analysis,Statistical Data Interpretation,Analyses, Statistical Data,Analysis, Statistical Data,Data Analyses, Statistical,Interpretations, Statistical Data,Statistical Data Analyses,Statistical Data Interpretations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000518 Eflornithine An inhibitor of ORNITHINE DECARBOXYLASE, the rate limiting enzyme of the polyamine biosynthetic pathway. Difluoromethylornithine,alpha-Difluoromethylornithine,DL-alpha-Difluoromethylornithine,Eflornithine Hydrochloride,Eflornithine Monohydrochloride, Monohydrate,MDL-71,782 A,Ornidyl,RMI 71782,Vaniqa,alpha-Difluoromethyl Ornithine,DL alpha Difluoromethylornithine,MDL 71,782 A,MDL71,782 A,Ornithine, alpha-Difluoromethyl,alpha Difluoromethyl Ornithine,alpha Difluoromethylornithine
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D012878 Skin Neoplasms Tumors or cancer of the SKIN. Cancer of Skin,Skin Cancer,Cancer of the Skin,Neoplasms, Skin,Cancer, Skin,Cancers, Skin,Neoplasm, Skin,Skin Cancers,Skin Neoplasm
D014922 Wisconsin State bounded on the north by Lake Superior and Michigan, on the east by Lake Michigan, on the south by Illinois and Iowa, and on the west by Minnesota and Iowa.
D015233 Models, Statistical Statistical formulations or analyses which, when applied to data and found to fit the data, are then used to verify the assumptions and parameters used in the analysis. Examples of statistical models are the linear model, binomial model, polynomial model, two-parameter model, etc. Probabilistic Models,Statistical Models,Two-Parameter Models,Model, Statistical,Models, Binomial,Models, Polynomial,Statistical Model,Binomial Model,Binomial Models,Model, Binomial,Model, Polynomial,Model, Probabilistic,Model, Two-Parameter,Models, Probabilistic,Models, Two-Parameter,Polynomial Model,Polynomial Models,Probabilistic Model,Two Parameter Models,Two-Parameter Model
D016013 Likelihood Functions Functions constructed from a statistical model and a set of observed data which give the probability of that data for various values of the unknown model parameters. Those parameter values that maximize the probability are the maximum likelihood estimates of the parameters. Likelihood Ratio Test,Maximum Likelihood Estimates,Estimate, Maximum Likelihood,Estimates, Maximum Likelihood,Function, Likelihood,Functions, Likelihood,Likelihood Function,Maximum Likelihood Estimate,Test, Likelihood Ratio

Related Publications

Da Xu, and Hui Zhao, and Jianguo Sun
November 2022, Statistical methods in medical research,
Da Xu, and Hui Zhao, and Jianguo Sun
September 2020, Biometrical journal. Biometrische Zeitschrift,
Da Xu, and Hui Zhao, and Jianguo Sun
January 2024, Biometrics,
Da Xu, and Hui Zhao, and Jianguo Sun
March 1997, Statistics in medicine,
Da Xu, and Hui Zhao, and Jianguo Sun
December 2023, Statistics in medicine,
Da Xu, and Hui Zhao, and Jianguo Sun
September 2018, Statistics in medicine,
Da Xu, and Hui Zhao, and Jianguo Sun
March 2021, Statistical methods in medical research,
Da Xu, and Hui Zhao, and Jianguo Sun
June 2008, Lifetime data analysis,
Da Xu, and Hui Zhao, and Jianguo Sun
December 1985, Biometrics,
Copied contents to your clipboard!