Effect of oxidative polymorphism (debrisoquine/sparteine type) on hepatic first-pass metabolism of bufuralol. 1985

P Dayer, and L Balant, and A Kupfer, and R Striberni, and T Leemann

Bufuralol is a beta-adrenoceptor blocking drug whose oxidative metabolism is under the same genetic control as debrisoquine and sparteine. The pharmacokinetics of bufuralol were studied in 10 healthy subjects (7 extensive and 3 poor metabolizers of debrisoquine) after oral and intravenous administration. In extensive metabolizers the systemic availability of bufuralol was 43%. Poor metabolizers were characterized by a considerable increase in systemic availability due to a corresponding decrease in hepatic first-pass metabolism. After oral administration of bufuralol non-linear kinetics may occur.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D003647 Debrisoquin An adrenergic neuron-blocking drug similar in effects to GUANETHIDINE. It is also noteworthy in being a substrate for a polymorphic cytochrome P-450 enzyme. Persons with certain isoforms of this enzyme are unable to properly metabolize this and many other clinically important drugs. They are commonly referred to as having a debrisoquin 4-hydroxylase polymorphism. Debrisoquine,Tendor
D004983 Ethanolamines AMINO ALCOHOLS containing the ETHANOLAMINE; (-NH2CH2CHOH) group and its derivatives. Aminoethanols
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000319 Adrenergic beta-Antagonists Drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety. Adrenergic beta-Antagonist,Adrenergic beta-Receptor Blockader,Adrenergic beta-Receptor Blockaders,beta-Adrenergic Antagonist,beta-Adrenergic Blocker,beta-Adrenergic Blocking Agent,beta-Adrenergic Blocking Agents,beta-Adrenergic Receptor Blockader,beta-Adrenergic Receptor Blockaders,beta-Adrenoceptor Antagonist,beta-Blockers, Adrenergic,beta-Adrenergic Antagonists,beta-Adrenergic Blockers,beta-Adrenoceptor Antagonists,Adrenergic beta Antagonist,Adrenergic beta Antagonists,Adrenergic beta Receptor Blockader,Adrenergic beta Receptor Blockaders,Adrenergic beta-Blockers,Agent, beta-Adrenergic Blocking,Agents, beta-Adrenergic Blocking,Antagonist, beta-Adrenergic,Antagonist, beta-Adrenoceptor,Antagonists, beta-Adrenergic,Antagonists, beta-Adrenoceptor,Blockader, Adrenergic beta-Receptor,Blockader, beta-Adrenergic Receptor,Blockaders, Adrenergic beta-Receptor,Blockaders, beta-Adrenergic Receptor,Blocker, beta-Adrenergic,Blockers, beta-Adrenergic,Blocking Agent, beta-Adrenergic,Blocking Agents, beta-Adrenergic,Receptor Blockader, beta-Adrenergic,Receptor Blockaders, beta-Adrenergic,beta Adrenergic Antagonist,beta Adrenergic Antagonists,beta Adrenergic Blocker,beta Adrenergic Blockers,beta Adrenergic Blocking Agent,beta Adrenergic Blocking Agents,beta Adrenergic Receptor Blockader,beta Adrenergic Receptor Blockaders,beta Adrenoceptor Antagonist,beta Adrenoceptor Antagonists,beta Blockers, Adrenergic,beta-Antagonist, Adrenergic,beta-Antagonists, Adrenergic,beta-Receptor Blockader, Adrenergic,beta-Receptor Blockaders, Adrenergic
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D013034 Sparteine A quinolizidine alkaloid isolated from several FABACEAE including LUPINUS; SPARTIUM; and CYTISUS. It has been used as an oxytocic and an anti-arrhythmia agent. It has also been of interest as an indicator of CYP2D6 genotype. 7,14-Methano-2H,6H-dipyrido(1,2-a:1',2'-e)(1,5)diazocine, dodecahydro-, (7S-(7alpha,7aalpha,14alpha,14abeta))-,Lupinidin,Lupinidine,Pachycarpine,D-sparteine,Depasan Retard,Genisteine Alkaloid,L-Sparteine,Pachycarpine Sulfate (1:1), Pentahydrate, (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Hydrochloride, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Hydrochloride, (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Hydroiodide, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Monohydrochloride, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Monohydroiodide, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Sulfate,Sparteine Sulfate (1:1), (7S-(7alpha,7aalpha,14alpha,14aalpha))-Isomer,Sparteine Sulfate (1:1), (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine Sulfate Anhydrous,Sparteine, (+)-Isomer,Sparteine, (-)-Isomer,Sparteine, (7R-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine, (7R-(7alpha,7abeta,14alpha,14abeta))-Isomer,Sparteine, (7S-(7alpha,7aalpha,14alpha,14aalpha))-Isomer,Sparteine, (7S-(7alpha,7aalpha,14alpha,14abeta))-Isomer,Sparteine, (7S-(7alpha,7abeta,14alpha,14abeta))-Isomer,alpha-Isosparteine,beta-Isosparteine,Anhydrous, Sparteine Sulfate,Sulfate Anhydrous, Sparteine,alpha Isosparteine,beta Isosparteine

Related Publications

P Dayer, and L Balant, and A Kupfer, and R Striberni, and T Leemann
January 1986, European journal of clinical pharmacology,
P Dayer, and L Balant, and A Kupfer, and R Striberni, and T Leemann
January 1990, Pharmacology & therapeutics,
P Dayer, and L Balant, and A Kupfer, and R Striberni, and T Leemann
January 1990, Pharmacology & therapeutics,
P Dayer, and L Balant, and A Kupfer, and R Striberni, and T Leemann
June 1984, European journal of clinical investigation,
P Dayer, and L Balant, and A Kupfer, and R Striberni, and T Leemann
April 1993, British journal of clinical pharmacology,
P Dayer, and L Balant, and A Kupfer, and R Striberni, and T Leemann
October 1991, British journal of clinical pharmacology,
P Dayer, and L Balant, and A Kupfer, and R Striberni, and T Leemann
April 1980, Clinical pharmacology and therapeutics,
P Dayer, and L Balant, and A Kupfer, and R Striberni, and T Leemann
November 1995, Drug metabolism and disposition: the biological fate of chemicals,
P Dayer, and L Balant, and A Kupfer, and R Striberni, and T Leemann
January 1989, European journal of clinical pharmacology,
P Dayer, and L Balant, and A Kupfer, and R Striberni, and T Leemann
October 1990, Pharmacology & toxicology,
Copied contents to your clipboard!