Fibrin gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibroplasia in guinea pigs. Role of cellular immunity, myofibroblasts, microvascular damage, and infarction in line 1 tumor regression. 1979

H F Dvorak, and A M Dvorak, and E J Manseau, and L Wiberg, and W H Churchill

Line 1 and line 10 tumors became invested in a fibrin-gel cocoon within hours after transplantation to the subcutaneous spaces of unsensitized syngeneic inbred Sewall Wright strain 2 guinea pigs. The fibrin gel comprised more than 80% of the line 1 tumor mass and, after day 3, became organized and was subsequently replaced by fibrous connective tissue, which gave the tumor the appearance of a scirrhous carcinoma. A cellular infiltrate of lymphocytes and basophils developed at the periphery of line 1 tumors after day 8, and tumors regressed by day 13. The fibrin gel investing the highly malignant line 10 tumors accounted for less than 10% of the tumor mass and persisted without fibrous organization as a tumor grew progressively and invaded adjacent tissues. These data provide new and potentially important insights into the biology of solid tumor growth and the mechanisms of immunologic tumor rejection. Envelopment of tumors in a fibrin gel created an anatomic barrier separating the tumors from the host. Neovascularization mimicking that about line 1 and line 10 tumors was induced by sc fibrin implants; these data suggest that activation of the clotting and/or fibrinolytic systems by tumor cells may itself provide sufficient stimulus for induction of tumor angiogenesis without requiring a separate tumor angiogenesis factor. The scirrhous pattern of growth characteristic of line 1 tumors apparently was achieved by organization of an abundant fibrin gel. Line 1 tumor regression did not for the most part involve direct contacts between tumor cells and any type of inflammatory cell, including macrophages; rather, tumor destruction was effected by ischemic necrosis secondary to widespread microvascular injury. The mechanisms of such injury are uncertain, but tumor rejection was correlated with evidence of developing cellular immunity and anatomic associations between lymphocytes and myofibroblasts. Further experiments will be necessary before these findings can be generalized to other tumor systems.

UI MeSH Term Description Entries
D007111 Immunity, Cellular Manifestations of the immune response which are mediated by antigen-sensitized T-lymphocytes via lymphokines or direct cytotoxicity. This takes place in the absence of circulating antibody or where antibody plays a subordinate role. Cell-Mediated Immunity,Cellular Immune Response,Cell Mediated Immunity,Cell-Mediated Immunities,Cellular Immune Responses,Cellular Immunities,Cellular Immunity,Immune Response, Cellular,Immune Responses, Cellular,Immunities, Cell-Mediated,Immunities, Cellular,Immunity, Cell-Mediated,Response, Cellular Immune
D007238 Infarction Formation of an infarct, which is NECROSIS in tissue due to local ISCHEMIA resulting from obstruction of BLOOD CIRCULATION, most commonly by a THROMBUS or EMBOLUS. Infarct,Infarctions,Infarcts
D008114 Liver Neoplasms, Experimental Experimentally induced tumors of the LIVER. Hepatoma, Experimental,Hepatoma, Morris,Hepatoma, Novikoff,Experimental Hepatoma,Experimental Hepatomas,Experimental Liver Neoplasms,Hepatomas, Experimental,Neoplasms, Experimental Liver,Experimental Liver Neoplasm,Liver Neoplasm, Experimental,Morris Hepatoma,Novikoff Hepatoma
D008297 Male Males
D005260 Female Females
D005337 Fibrin A protein derived from FIBRINOGEN in the presence of THROMBIN, which forms part of the blood clot. Antithrombin I
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006084 Graft Rejection An immune response with both cellular and humoral components, directed against an allogeneic transplant, whose tissue antigens are not compatible with those of the recipient. Transplant Rejection,Rejection, Transplant,Transplantation Rejection,Graft Rejections,Rejection, Graft,Rejection, Transplantation,Rejections, Graft,Rejections, Transplant,Rejections, Transplantation,Transplant Rejections,Transplantation Rejections
D006097 Granulation Tissue A vascular connective tissue formed on the surface of a healing wound, ulcer, or inflamed tissue. It consists of new capillaries and an infiltrate containing lymphoid cells, macrophages, and plasma cells. Granulation Tissues,Tissue, Granulation,Tissues, Granulation

Related Publications

H F Dvorak, and A M Dvorak, and E J Manseau, and L Wiberg, and W H Churchill
February 1991, International journal of cancer,
H F Dvorak, and A M Dvorak, and E J Manseau, and L Wiberg, and W H Churchill
September 1985, Journal of the National Cancer Institute,
H F Dvorak, and A M Dvorak, and E J Manseau, and L Wiberg, and W H Churchill
April 1983, Gan,
H F Dvorak, and A M Dvorak, and E J Manseau, and L Wiberg, and W H Churchill
May 1978, Cancer research,
H F Dvorak, and A M Dvorak, and E J Manseau, and L Wiberg, and W H Churchill
March 1985, Journal of immunology (Baltimore, Md. : 1950),
H F Dvorak, and A M Dvorak, and E J Manseau, and L Wiberg, and W H Churchill
January 1976, Modern problems in ophthalmology,
H F Dvorak, and A M Dvorak, and E J Manseau, and L Wiberg, and W H Churchill
January 1986, Virchows Archiv. B, Cell pathology including molecular pathology,
H F Dvorak, and A M Dvorak, and E J Manseau, and L Wiberg, and W H Churchill
November 1973, Journal of the National Cancer Institute,
H F Dvorak, and A M Dvorak, and E J Manseau, and L Wiberg, and W H Churchill
March 2007, Cancer research,
H F Dvorak, and A M Dvorak, and E J Manseau, and L Wiberg, and W H Churchill
January 1981, Zhurnal mikrobiologii, epidemiologii i immunobiologii,
Copied contents to your clipboard!