Choline acetyltransferase activity in striatum of neonatal rats increased by nerve growth factor. 1985

W C Mobley, and J L Rutkowski, and G I Tennekoon, and K Buchanan, and M V Johnston

Some neurodegenerative disorders may be caused by abnormal synthesis or utilization of trophic molecules required to support neuronal survival. A test of this hypothesis requires that trophic agents specific for the affected neurons be identified. Cholinergic neurons in the corpus striatum of neonatal rats were found to respond to intracerebroventricular administration of nerve growth factor with prominent, dose-dependent, selective increases in choline acetyltransferase activity. Cholinergic neurons in the basal forebrain also respond to nerve growth factor in this way. These actions of nerve growth factor may indicate its involvement in the normal function of forebrain cholinergic neurons as well as in neurodegenerative disorders involving such cells.

UI MeSH Term Description Entries
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002795 Choline O-Acetyltransferase An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6. Choline Acetylase,Choline Acetyltransferase,Acetylase, Choline,Acetyltransferase, Choline,Choline O Acetyltransferase,O-Acetyltransferase, Choline
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006816 Huntington Disease A familial disorder inherited as an autosomal dominant trait and characterized by the onset of progressive CHOREA and DEMENTIA in the fourth or fifth decade of life. Common initial manifestations include paranoia; poor impulse control; DEPRESSION; HALLUCINATIONS; and DELUSIONS. Eventually intellectual impairment; loss of fine motor control; ATHETOSIS; and diffuse chorea involving axial and limb musculature develops, leading to a vegetative state within 10-15 years of disease onset. The juvenile variant has a more fulminant course including SEIZURES; ATAXIA; dementia; and chorea. (From Adams et al., Principles of Neurology, 6th ed, pp1060-4) Huntington Chorea,Juvenile Huntington Disease,Akinetic-Rigid Variant of Huntington Disease,Chorea, Chronic Progressive Hereditary (Huntington),Chronic Progressive Hereditary Chorea (Huntington),Huntington Chronic Progressive Hereditary Chorea,Huntington Disease, Akinetic-Rigid Variant,Huntington Disease, Juvenile,Huntington Disease, Juvenile-Onset,Huntington Disease, Late Onset,Huntington's Chorea,Huntington's Disease,Juvenile-Onset Huntington Disease,Late-Onset Huntington Disease,Progressive Chorea, Chronic Hereditary (Huntington),Progressive Chorea, Hereditary, Chronic (Huntington),Akinetic Rigid Variant of Huntington Disease,Chorea, Huntington,Chorea, Huntington's,Huntington Disease, Akinetic Rigid Variant,Huntington Disease, Juvenile Onset,Huntington Disease, Late-Onset,Juvenile Onset Huntington Disease,Late Onset Huntington Disease

Related Publications

W C Mobley, and J L Rutkowski, and G I Tennekoon, and K Buchanan, and M V Johnston
March 1972, Nature: New biology,
W C Mobley, and J L Rutkowski, and G I Tennekoon, and K Buchanan, and M V Johnston
January 1991, Neurobiology of aging,
W C Mobley, and J L Rutkowski, and G I Tennekoon, and K Buchanan, and M V Johnston
June 1990, Neuroscience letters,
W C Mobley, and J L Rutkowski, and G I Tennekoon, and K Buchanan, and M V Johnston
September 1994, Neuroscience,
W C Mobley, and J L Rutkowski, and G I Tennekoon, and K Buchanan, and M V Johnston
December 1990, Brain research,
W C Mobley, and J L Rutkowski, and G I Tennekoon, and K Buchanan, and M V Johnston
January 1991, Neurochemical research,
W C Mobley, and J L Rutkowski, and G I Tennekoon, and K Buchanan, and M V Johnston
September 1990, Journal of neurochemistry,
W C Mobley, and J L Rutkowski, and G I Tennekoon, and K Buchanan, and M V Johnston
January 1996, Pediatric neurosurgery,
W C Mobley, and J L Rutkowski, and G I Tennekoon, and K Buchanan, and M V Johnston
January 1996, Tissue engineering,
W C Mobley, and J L Rutkowski, and G I Tennekoon, and K Buchanan, and M V Johnston
October 1989, Brain research,
Copied contents to your clipboard!