Palytoxin-induced permeability changes in excitable membranes. 1985

L Lauffer, and S Stengelin, and L Béress, and F Hucho

Palytoxin, a toxin isolated from the Caribean corrall Palythoa caribaeorum, increases the cation permeability of excitable membranes in vitro. Three membrane systems have been investigated: axonal membranes from crayfish walking leg nerves, membranes rich in nicotinic acetylcholine receptor isolated from Torpedo californica electric tissue and, for control, artificial liposomes. Ion permeability of the latter was not affected by palytoxin, but with both biological membranes an increase in cation permeability was observed at a palytoxin concentration of 0.14 microM. Palytoxin-induced cation flow through the axonal membrane was not inhibited by tetrodotoxin, indicating that the voltage-dependent sodium channels were not involved. The effect of palytoxin on the receptor-rich membranes was not blocked by alpha-bungarotoxin, a competitive antagonist of the nicotinic acetylcholine receptor, nor by triphenylmethylphosphonium, a blocker of the receptor-ion channel. But with both the axonal and the receptor-rich membranes ouabain was an inhibitor of the palytoxin-induced cation flow. Evidence is presented that it is not the (Na+ + K+)-ATPase which is affected by palytoxin as has been postulated for similar observations with non-neuronal membranes (Chhatwal, G.S., Hessler, H.-J. and Habermann, E. (1983) Naunyn-Schmiedeberg's Arch. Pharmacol. 323, 261-268).

UI MeSH Term Description Entries
D008081 Liposomes Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins. Niosomes,Transferosomes,Ultradeformable Liposomes,Liposomes, Ultra-deformable,Liposome,Liposome, Ultra-deformable,Liposome, Ultradeformable,Liposomes, Ultra deformable,Liposomes, Ultradeformable,Niosome,Transferosome,Ultra-deformable Liposome,Ultra-deformable Liposomes,Ultradeformable Liposome
D008094 Lithium An element in the alkali metals family. It has the atomic symbol Li, atomic number 3, and atomic weight [6.938; 6.997]. Salts of lithium are used in treating BIPOLAR DISORDER. Lithium-7,Lithium 7
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D003064 Cnidarian Venoms Venoms from jellyfish; CORALS; SEA ANEMONES; etc. They contain hemo-, cardio-, dermo- , and neuro-toxic substances and probably ENZYMES. They include palytoxin, sarcophine, and anthopleurine. Chironex Venoms,Jellyfish Venoms,Nematocyst Venoms,Sea Anemone Venoms,Chironex Venom,Cnidarian Venom,Jellyfish Venom,Portuguese Man-of-War Venom,Sea Anemone Venom,Portuguese Man of War Venom,Venom, Chironex,Venom, Cnidarian,Venom, Jellyfish,Venom, Portuguese Man-of-War,Venom, Sea Anemone,Venoms, Chironex,Venoms, Cnidarian,Venoms, Jellyfish,Venoms, Nematocyst,Venoms, Sea Anemone
D003400 Astacoidea A superfamily of various freshwater CRUSTACEA, in the infraorder Astacidea, comprising the crayfish. Common genera include Astacus and Procambarus. Crayfish resemble lobsters, but are usually much smaller. Astacus,Crayfish,Procambarus,Astacoideas,Crayfishs
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D000178 Acrylamides Colorless, odorless crystals that are used extensively in research laboratories for the preparation of polyacrylamide gels for electrophoresis and in organic synthesis, and polymerization. Some of its polymers are used in sewage and wastewater treatment, permanent press fabrics, and as soil conditioning agents.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon

Related Publications

L Lauffer, and S Stengelin, and L Béress, and F Hucho
June 1975, Biophysical journal,
L Lauffer, and S Stengelin, and L Béress, and F Hucho
November 1973, Biophysical journal,
L Lauffer, and S Stengelin, and L Béress, and F Hucho
January 1972, Biofizika,
L Lauffer, and S Stengelin, and L Béress, and F Hucho
January 1967, Journal de physiologie,
L Lauffer, and S Stengelin, and L Béress, and F Hucho
December 1972, The Journal of membrane biology,
L Lauffer, and S Stengelin, and L Béress, and F Hucho
December 1994, Cellular and molecular neurobiology,
L Lauffer, and S Stengelin, and L Béress, and F Hucho
April 1972, Plant physiology,
L Lauffer, and S Stengelin, and L Béress, and F Hucho
January 1974, Annual review of physical chemistry,
L Lauffer, and S Stengelin, and L Béress, and F Hucho
September 1972, Nature,
L Lauffer, and S Stengelin, and L Béress, and F Hucho
July 1966, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!