Effects of changes in motor unit size on transmitter release at the frog neuromuscular junction. 1985

A A Herrera, and A D Grinnell

The dependence of transmitter release and synaptic effectiveness on the size of a neuron's peripheral field was studied using neuromuscular junctions in sartorius muscles of adult frogs (Rana pipiens). The size of the peripheral field (motor unit size) was reduced by crushing the sartorius nerve and surgically removing half of the muscle fibers. Synapses thus formed were compared with those formed when crushed nerves reinnervated intact whole muscles, as well as with synapses in normal unoperated muscles. Indirect observations suggested that all motor axons participated in reinnervation and that motor unit size was indeed smaller in half-muscles. Synaptic safety margins, as measured by the sensitivity of nerve stimulus-evoked twitching to low Ca2+, were substantially higher in muscles with reduced motor units. These higher safety margins were due to enhanced evoked transmitter release. In Ringer solution containing Mg2+ and lowered Ca2+, total evoked release and evoked release per unit nerve terminal length were approximately 2-fold higher in muscles with reduced motor units, when studied 7 to 18 weeks postoperatively. A similar difference was seen when unblocked release was measured in a normal physiological solution, after blocking excitation-contraction coupling and muscle fiber action potential generation with formamide. Miniature endplate potential frequency in half-muscles was 2 to 3 times higher than in controls when tested in normal physiological solution, but was not significantly different in low Ca2+, Mg2+-containing solution. By 34 weeks postoperatively, there was no longer a difference in evoked release, even though the difference in motor unit size persisted.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D018377 Neurotransmitter Agents Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function. Nerve Transmitter Substance,Neurohormone,Neurohumor,Neurotransmitter Agent,Nerve Transmitter Substances,Neurohormones,Neurohumors,Neuromodulator,Neuromodulators,Neuroregulator,Neuroregulators,Neurotransmitter,Neurotransmitters,Substances, Nerve Transmitter,Transmitter Substances, Nerve,Substance, Nerve Transmitter,Transmitter Substance, Nerve

Related Publications

A A Herrera, and A D Grinnell
April 1984, European journal of pharmacology,
A A Herrera, and A D Grinnell
March 1981, The Journal of cell biology,
A A Herrera, and A D Grinnell
February 1986, Pflugers Archiv : European journal of physiology,
A A Herrera, and A D Grinnell
July 1975, British journal of pharmacology,
A A Herrera, and A D Grinnell
January 1973, The Journal of physiology,
A A Herrera, and A D Grinnell
May 1981, Brain research,
A A Herrera, and A D Grinnell
November 1975, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
A A Herrera, and A D Grinnell
December 1972, The Journal of physiology,
Copied contents to your clipboard!