[3H]-rauwolscine binding to alpha 2-adrenoceptors in the mammalian kidney: apparent receptor heterogeneity between species. 1985

C B Neylon, and R J Summers

Binding of the alpha 2-adrenoceptor antagonist [3H]-rauwolscine was characterized in membrane preparations from the kidneys of mouse, rat, rabbit, dog, and man. In all species, binding reached equilibrium within 45 min and dissociated at a single exponential rate after addition of phentolamine 10 microM. Saturation studies showed that the affinity of [3H]-rauwolscine was similar in all species (2.33-3.03 nM) except man where it was significantly higher (0.98 nM). Marked differences were seen in the density of binding sites, increasing in the order: man less than dog less than rabbit less than rat less than mouse. In all cases, Hill coefficients were not significantly different from unity. [3H]-rauwolscine binds with low affinity (KD greater than 15 nM) to membranes prepared from guinea-pig kidney. The low affinity binding is not due to the absence of particular ions in the incubation medium or to receptor occupation by endogenous agonist. The binding in all species was found to be stereoselective with respect to the isomers of noradrenaline. However, differences were seen in the characteristics of agonist interactions with the binding site both between isomers and between species. Marked differences in affinity of particular alpha-adrenoceptor antagonists were observed for alpha 2-adrenoceptors labelled by [3H]-rauwolscine. These differences were most evident with the alpha 1-adrenoceptor selective antagonist prazosin which displayed inhibition constants (Ki values) of 33.2, 39.5, 261, 570 and 595 nM in rat, mouse, dog, man and rabbit, respectively. Differences are apparent in the characteristics of alpha 2-adrenoceptors labelled by [3H]-rauwolscine between species and it is suggested that the differences observed for alpha 1-selective antagonists such as prazosin may be related to binding to additional sites in the vicinity of the alpha 2-adrenoceptor.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females

Related Publications

C B Neylon, and R J Summers
September 1988, The American journal of physiology,
C B Neylon, and R J Summers
January 1986, European journal of pharmacology,
C B Neylon, and R J Summers
September 1996, The Journal of pharmacology and experimental therapeutics,
C B Neylon, and R J Summers
January 1989, European journal of pharmacology,
Copied contents to your clipboard!