The fim genes responsible for synthesis of type 1 fimbriae in Escherichia coli, cloning and genetic organization. 1985

P Klemm, and B J Jørgensen, and I van Die, and H de Ree, and H Bergmans

The genes responsible for the expression of type 1 fimbriae, produced by the majority of E. coli strains, have been cloned from an E. coli K12 strain. The "passenger" DNA from an initial cosmid clone was reduced in size and subcloned in pACYC184 and pBR322 vectors. A DNA fragment of around 8 kbp was found to be required for the biosynthesis of type 1 fimbriae. This was further studied by transposon-mediated insertional inactivation and by BAL31-mediated deletions. Four genes, designated fimA, B, C, and D were found to be involved in the synthesis of the fimbriae. They encoded proteins that in their processed form appeared with apparent molecular weights of 16.5 kd, 23 kd, 26 kd, and 89 kd, the 16.6 kd polypeptide being the fimbrial subunit. The order to the genes was found to be: fimB, fimA, fimC, and fimD, organized in three transcriptional units.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010861 Fimbriae, Bacterial Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX). Bacterial Fimbriae,Bacterial Pili,Common Fimbriae,Common Pili,Pili, Bacterial,Pili, Common,Bacterial Fimbria,Bacterial Pilus,Common Fimbria,Common Pilus,Fimbria, Bacterial,Pilus, Bacterial,Fimbria, Common,Fimbriae, Common,Pilus, Common
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005816 Genetic Complementation Test A test used to determine whether or not complementation (compensation in the form of dominance) will occur in a cell with a given mutant phenotype when another mutant genome, encoding the same mutant phenotype, is introduced into that cell. Allelism Test,Cis Test,Cis-Trans Test,Complementation Test,Trans Test,Allelism Tests,Cis Tests,Cis Trans Test,Cis-Trans Tests,Complementation Test, Genetic,Complementation Tests,Complementation Tests, Genetic,Genetic Complementation Tests,Trans Tests
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006384 Hemagglutination The aggregation of ERYTHROCYTES by AGGLUTININS, including antibodies, lectins, and viral proteins (HEMAGGLUTINATION, VIRAL). Hemagglutinations

Related Publications

P Klemm, and B J Jørgensen, and I van Die, and H de Ree, and H Bergmans
July 1987, Molecular & general genetics : MGG,
P Klemm, and B J Jørgensen, and I van Die, and H de Ree, and H Bergmans
June 1986, The EMBO journal,
P Klemm, and B J Jørgensen, and I van Die, and H de Ree, and H Bergmans
August 1984, Journal of bacteriology,
P Klemm, and B J Jørgensen, and I van Die, and H de Ree, and H Bergmans
December 1983, Infection and immunity,
P Klemm, and B J Jørgensen, and I van Die, and H de Ree, and H Bergmans
May 1983, Genetika,
P Klemm, and B J Jørgensen, and I van Die, and H de Ree, and H Bergmans
January 1988, Antonie van Leeuwenhoek,
P Klemm, and B J Jørgensen, and I van Die, and H de Ree, and H Bergmans
January 1988, Reviews of infectious diseases,
P Klemm, and B J Jørgensen, and I van Die, and H de Ree, and H Bergmans
October 1994, FEMS microbiology letters,
P Klemm, and B J Jørgensen, and I van Die, and H de Ree, and H Bergmans
October 1984, Journal of bacteriology,
P Klemm, and B J Jørgensen, and I van Die, and H de Ree, and H Bergmans
May 2008, Journal of bacteriology,
Copied contents to your clipboard!