The effects of halothane on somatosensory and flash visual evoked potentials during operations. 1985

A D Wang, and I Costa e Silva, and L Symon, and D Jewkes

Intraoperative use of somatosensory evoked potentials (SEP's) to monitor intracranial aneurysm surgery and flash visual evoked potentials (F-VEP's) for parasellar surgery have been routinely employed in our clinic. We found that both EP modalities are sensitive to the changing concentration of our standard hypotensive agent, halothane. The prolongation of the N14-N20 interpeak latency to median nerve stimulation at the wrist, and prolongation of P100 latency with altered configuration of early VEP components to flash light stimulation, appear to be the results of direct pharmacological effects of the agent and not an effect of secondary hypotension. VEP is found easily abolished by halothane at a concentration of 2.0%, while the SEP is more resistant. Halothane is not ideal however when monitoring intraoperative VEP.

UI MeSH Term Description Entries
D007432 Intraoperative Period The period during a surgical operation. Intraoperative Periods,Period, Intraoperative,Periods, Intraoperative
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001927 Brain Diseases Pathologic conditions affecting the BRAIN, which is composed of the intracranial components of the CENTRAL NERVOUS SYSTEM. This includes (but is not limited to) the CEREBRAL CORTEX; intracranial white matter; BASAL GANGLIA; THALAMUS; HYPOTHALAMUS; BRAIN STEM; and CEREBELLUM. Intracranial Central Nervous System Disorders,Brain Disorders,CNS Disorders, Intracranial,Central Nervous System Disorders, Intracranial,Central Nervous System Intracranial Disorders,Encephalon Diseases,Encephalopathy,Intracranial CNS Disorders,Brain Disease,Brain Disorder,CNS Disorder, Intracranial,Encephalon Disease,Encephalopathies,Intracranial CNS Disorder
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D002532 Intracranial Aneurysm Abnormal outpouching in the wall of intracranial blood vessels. Most common are the saccular (berry) aneurysms located at branch points in CIRCLE OF WILLIS at the base of the brain. Vessel rupture results in SUBARACHNOID HEMORRHAGE or INTRACRANIAL HEMORRHAGES. Giant aneurysms (>2.5 cm in diameter) may compress adjacent structures, including the OCULOMOTOR NERVE. (From Adams et al., Principles of Neurology, 6th ed, p841) Aneurysm, Cerebral,Aneurysm, Intracranial,Basilar Artery Aneurysm,Berry Aneurysm,Brain Aneurysm,Cerebral Aneurysm,Giant Intracranial Aneurysm,Mycotic Aneurysm, Intracranial,Aneurysm, Anterior Cerebral Artery,Aneurysm, Anterior Communicating Artery,Aneurysm, Basilar Artery,Aneurysm, Middle Cerebral Artery,Aneurysm, Posterior Cerebral Artery,Aneurysm, Posterior Communicating Artery,Anterior Cerebral Artery Aneurysm,Anterior Communicating Artery Aneurysm,Middle Cerebral Artery Aneurysm,Posterior Cerebral Artery Aneurysm,Posterior Communicating Artery Aneurysm,Aneurysm, Berry,Aneurysm, Brain,Aneurysm, Giant Intracranial,Aneurysm, Intracranial Mycotic,Aneurysms, Basilar Artery,Aneurysms, Berry,Aneurysms, Brain,Aneurysms, Cerebral,Aneurysms, Giant Intracranial,Aneurysms, Intracranial,Aneurysms, Intracranial Mycotic,Artery Aneurysm, Basilar,Artery Aneurysms, Basilar,Basilar Artery Aneurysms,Berry Aneurysms,Brain Aneurysms,Cerebral Aneurysms,Giant Intracranial Aneurysms,Intracranial Aneurysm, Giant,Intracranial Aneurysms,Intracranial Aneurysms, Giant,Intracranial Mycotic Aneurysm,Intracranial Mycotic Aneurysms,Mycotic Aneurysms, Intracranial
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D005073 Evoked Potentials, Somatosensory The electric response evoked in the CEREBRAL CORTEX by stimulation along AFFERENT PATHWAYS from PERIPHERAL NERVES to CEREBRUM. Somatosensory Evoked Potentials,Evoked Potential, Somatosensory,Somatosensory Evoked Potential
D005074 Evoked Potentials, Visual The electric response evoked in the cerebral cortex by visual stimulation or stimulation of the visual pathways. Visual Evoked Response,Evoked Potential, Visual,Evoked Response, Visual,Evoked Responses, Visual,Potential, Visual Evoked,Potentials, Visual Evoked,Response, Visual Evoked,Responses, Visual Evoked,Visual Evoked Potential,Visual Evoked Potentials,Visual Evoked Responses

Related Publications

A D Wang, and I Costa e Silva, and L Symon, and D Jewkes
January 1990, International anesthesiology clinics,
A D Wang, and I Costa e Silva, and L Symon, and D Jewkes
January 1989, Annales francaises d'anesthesie et de reanimation,
A D Wang, and I Costa e Silva, and L Symon, and D Jewkes
January 1988, Annales francaises d'anesthesie et de reanimation,
A D Wang, and I Costa e Silva, and L Symon, and D Jewkes
June 1987, Anesthesiology,
A D Wang, and I Costa e Silva, and L Symon, and D Jewkes
March 1989, British journal of anaesthesia,
A D Wang, and I Costa e Silva, and L Symon, and D Jewkes
January 1982, Annales francaises d'anesthesie et de reanimation,
A D Wang, and I Costa e Silva, and L Symon, and D Jewkes
December 1987, British journal of anaesthesia,
A D Wang, and I Costa e Silva, and L Symon, and D Jewkes
January 2004, Zhonghua yi xue za zhi,
A D Wang, and I Costa e Silva, and L Symon, and D Jewkes
September 1968, Brain research,
A D Wang, and I Costa e Silva, and L Symon, and D Jewkes
September 1985, British journal of anaesthesia,
Copied contents to your clipboard!