| D007001 |
Hypogastric Plexus |
A complex network of nerve fibers in the pelvic region. The hypogastric plexus distributes sympathetic fibers from the lumbar paravertebral ganglia and the aortic plexus, parasympathetic fibers from the pelvic nerve, and visceral afferents. The bilateral pelvic plexus is in its lateral extent. |
Pelvic Plexus,Plexus, Hypogastric,Plexus, Pelvic |
|
| D008297 |
Male |
|
Males |
|
| D009435 |
Synaptic Transmission |
The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. |
Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic |
|
| D010791 |
Phrenic Nerve |
The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. |
Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves |
|
| D011950 |
Receptors, Cholinergic |
Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. |
ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive |
|
| D002038 |
Bungarotoxins |
Neurotoxic proteins from the venom of the banded or Formosan krait (Bungarus multicinctus, an elapid snake). alpha-Bungarotoxin blocks nicotinic acetylcholine receptors and has been used to isolate and study them; beta- and gamma-bungarotoxins act presynaptically causing acetylcholine release and depletion. Both alpha and beta forms have been characterized, the alpha being similar to the large, long or Type II neurotoxins from other elapid venoms. |
alpha-Bungarotoxin,beta-Bungarotoxin,kappa-Bungarotoxin,alpha Bungarotoxin,beta Bungarotoxin,kappa Bungarotoxin |
|
| D005728 |
Ganglia, Sympathetic |
Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. |
Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion |
|
| D006168 |
Guinea Pigs |
A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. |
Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea |
|
| D006584 |
Hexamethonium Compounds |
Compounds containing the hexamethylenebis(trimethylammonium) cation. Members of this group frequently act as antihypertensive agents and selective ganglionic blocking agents. |
Compounds, Hexamethonium |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|