The Wellcome Foundation lecture, 1982. Opioid peptides and their receptors. 1985

H W Kosterlitz

The remarkable feature of the opioid system is the complexity of its ligands and their interactions with the mu-, delta- and kappa-binding sites. The three endogenous opioid precursors give rise to more than ten opioid fragments. The fragments of pro-opiocortin and pro-enkephalin have affinities mainly to the mu- and delta-binding sites and those of pro-dynorphin have a preference for the kappa-binding site. It is important to realize that some of the larger fragments may have pharmacological actions that are of a non-opioid character. As the endogenous opioid peptides bind to more than one of the types of binding sites, it was necessary to obtain synthetic compounds that bind almost exclusively at one site. There are now agonists for which this aim has been achieved but we still require antagonists that are exclusively selective for only one opioid site. The results obtained with opioid peptides or non-peptides having such qualities would be the physiological basis for a correlation of the binding at mu-, delta- and kappa-receptors with their pharmacological effects. Furthermore, since almost all endogenous opioid ligands are degraded by peptidases, it is necessary to synthesize non-toxic inhibitors of those peptidases that play a role in opioid transmission. Related to this problem is the need to develop methods for the study of the release of various endogenous opioid peptides under physiological conditions.

UI MeSH Term Description Entries
D009197 Myenteric Plexus One of two ganglionated neural networks which together form the ENTERIC NERVOUS SYSTEM. The myenteric (Auerbach's) plexus is located between the longitudinal and circular muscle layers of the gut. Its neurons project to the circular muscle, to other myenteric ganglia, to submucosal ganglia, or directly to the epithelium, and play an important role in regulating and patterning gut motility. (From FASEB J 1989;3:127-38) Auerbach's Plexus,Auerbach Plexus,Auerbachs Plexus,Plexus, Auerbach's,Plexus, Myenteric
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004723 Endorphins One of the three major groups of endogenous opioid peptides. They are large peptides derived from the PRO-OPIOMELANOCORTIN precursor. The known members of this group are alpha-, beta-, and gamma-endorphin. The term endorphin is also sometimes used to refer to all opioid peptides, but the narrower sense is used here; OPIOID PEPTIDES is used for the broader group. Endorphin
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

H W Kosterlitz
January 1986, Biochimie,
H W Kosterlitz
May 1987, La Revue du praticien,
H W Kosterlitz
January 1981, Duodecim; laaketieteellinen aikakauskirja,
H W Kosterlitz
March 1981, Proceedings of the Royal Society of London. Series B, Biological sciences,
H W Kosterlitz
December 1987, Journal of cardiothoracic anesthesia,
H W Kosterlitz
October 1995, Proceedings. Biological sciences,
H W Kosterlitz
July 2002, Experimental physiology,
H W Kosterlitz
January 2004, Medical history,
H W Kosterlitz
July 2021, Cellular and molecular neurobiology,
H W Kosterlitz
August 1987, Proceedings of the Royal Society of London. Series B, Biological sciences,
Copied contents to your clipboard!