Consecutive ultra-short-term heart rate variability to track dynamic changes in autonomic nervous system during and after exercise. 2017

Xiang Chen, and Ruijie Yao, and Gezhen Yin, and Jin Li
Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.

OBJECTIVE Quantitative measurement of the dynamic changes in autonomic nervous system (ANS) during and after exercise has great significance in clinical, sports training and other fields. A consecutive ultra-short-term (30 s, UST) heart rate variability (HRV) method was proposed to track the exercise-induced autonomic control of heart rate (HR). METHODS Twenty-three healthy young men participated in the study. The first four stages of the Modified Bruce Protocol (S0-S3) were performed. Six HRV indices, i.e. HF (power of high frequency ranged from 0.15 to 0.4 Hz), LF (power of low frequency ranged from 0.04 to 0.15 Hz), LF/HF, SD1 and SD2 of Poincaré plot, and SD2/SD1, over 30 s were calculated every 5 s over 3 min RR time series during, as well as after, exercise. RESULTS The results showed that during exercise, SD1, SD2, HF and LF dropped down quickly and tended to stabilize. Particularly, SD1 and HF showed a slight upward trend in the lower three stages while the declining time of SD2 in S3 lasted longer than the other stages. SD2/SD1 increased rapidly first and then decreased slowly. The values of SD2/SD1 in S3 remained higher than those in the other stages. After exercise, SD1, SD2, HF and LF kept increasing first and then declined slowly or fluctuated with decaying amplitudes. SD2/SD1 increased initially, then decreased and fluctuated slightly. CONCLUSIONS Compared with the indices in frequency domain, the Poincaré indices were more sensitive and accurate in UST measurement of ANS during exercise. The results demonstrated that the UST method could characterize the dynamic changing tendency of ANS during and after exercise and quantify the differences of changes in ANS induced by exercise with different intensities. In particular, the vagal branch functioned dominantly in controlling HR in S0 but the effect of the sympathetic branch on HR enhanced with the increase of exercise intensity. In addition, the transient changes of ANS related with the sudden onset of exercise could also be reflected, despite perhaps being limited by the computation window width to some extent. Thus, the consecutive UST Poincaré indices could provide a feasible and simple method to measure quantitatively the exercise-induced dynamic changes in ANS.

UI MeSH Term Description Entries
D008297 Male Males
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001341 Autonomic Nervous System The ENTERIC NERVOUS SYSTEM; PARASYMPATHETIC NERVOUS SYSTEM; and SYMPATHETIC NERVOUS SYSTEM taken together. Generally speaking, the autonomic nervous system regulates the internal environment during both peaceful activity and physical or emotional stress. Autonomic activity is controlled and integrated by the CENTRAL NERVOUS SYSTEM, especially the HYPOTHALAMUS and the SOLITARY NUCLEUS, which receive information relayed from VISCERAL AFFERENTS. Vegetative Nervous System,Visceral Nervous System,Autonomic Nervous Systems,Nervous System, Autonomic,Nervous System, Vegetative,Nervous System, Visceral,Nervous Systems, Autonomic,Nervous Systems, Vegetative,Nervous Systems, Visceral,System, Autonomic Nervous,System, Vegetative Nervous,System, Visceral Nervous,Systems, Autonomic Nervous,Systems, Vegetative Nervous,Systems, Visceral Nervous,Vegetative Nervous Systems,Visceral Nervous Systems
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015444 Exercise Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure. Aerobic Exercise,Exercise, Aerobic,Exercise, Isometric,Exercise, Physical,Isometric Exercise,Physical Activity,Acute Exercise,Exercise Training,Activities, Physical,Activity, Physical,Acute Exercises,Aerobic Exercises,Exercise Trainings,Exercise, Acute,Exercises,Exercises, Acute,Exercises, Aerobic,Exercises, Isometric,Exercises, Physical,Isometric Exercises,Physical Activities,Physical Exercise,Physical Exercises,Training, Exercise,Trainings, Exercise
D055815 Young Adult A person between 19 and 24 years of age. Adult, Young,Adults, Young,Young Adults

Related Publications

Xiang Chen, and Ruijie Yao, and Gezhen Yin, and Jin Li
January 2018, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Xiang Chen, and Ruijie Yao, and Gezhen Yin, and Jin Li
March 2023, Sensors (Basel, Switzerland),
Xiang Chen, and Ruijie Yao, and Gezhen Yin, and Jin Li
February 2005, European journal of internal medicine,
Xiang Chen, and Ruijie Yao, and Gezhen Yin, and Jin Li
June 1994, Journal of clinical pharmacology,
Xiang Chen, and Ruijie Yao, and Gezhen Yin, and Jin Li
May 1992, Chest,
Xiang Chen, and Ruijie Yao, and Gezhen Yin, and Jin Li
August 2023, Acta cardiologica,
Xiang Chen, and Ruijie Yao, and Gezhen Yin, and Jin Li
September 2002, Pacing and clinical electrophysiology : PACE,
Xiang Chen, and Ruijie Yao, and Gezhen Yin, and Jin Li
December 2018, Psychiatry research,
Xiang Chen, and Ruijie Yao, and Gezhen Yin, and Jin Li
June 1983, American journal of obstetrics and gynecology,
Copied contents to your clipboard!