Substrate oxidation by isolated rat brain mitochondria and synaptosomes. 1985

J T Tildon, and L M Roeder, and J H Stevenson

The rates of [6-14C]-glucose oxidation by reconstituted systems of cytosol and mitochondria or cytosol and synaptosomes were essentially the same as the rate of oxidation of [3-14C]-3-hydroxybutyrate. However, the rate of [U-14C]-glutamine oxidation by mitochondria was 2.5 times that by synaptosomes. The addition of glutamine (5 mM) caused a reduction in the rates of oxidation [6-14C]-glucose of 20% and 40% by mitochondria and synaptosomes, respectively. Conversely, the addition of glucose (5 mM) had little or no effect on the rate of [U-14C]-glutamine oxidation by either organelle. Amino-oxyacetate decreased [U-14C]-glutamine oxidation by mitochondria more than 35% but had little or no effect on the rate of glutamine oxidation by synaptosomes. When glucose (5 mM) was added to [3-14C]-3-hydroxybutyrate, the rates of oxidation by the mitochondria and synaptosomes were increased by 65% and 77%, respectively. However, in the reverse situation the addition of 3-hydroxybutyrate decreased [6-14C]-glucose oxidation by synaptosomes (35%) but did not decrease the rate by mitochondria. These results suggest that differences in the rates of substrate utilization by mitochondria and synaptosomes and differences in substrate interactions in these two subcellular organelles may contribute to metabolic compartmentation in the brain.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction

Related Publications

J T Tildon, and L M Roeder, and J H Stevenson
August 1968, The Journal of biological chemistry,
J T Tildon, and L M Roeder, and J H Stevenson
January 1993, Developmental neuroscience,
J T Tildon, and L M Roeder, and J H Stevenson
August 1997, Lipids,
J T Tildon, and L M Roeder, and J H Stevenson
November 1975, Brain research,
J T Tildon, and L M Roeder, and J H Stevenson
December 1974, Journal of neurochemistry,
J T Tildon, and L M Roeder, and J H Stevenson
July 1974, The Biochemical journal,
J T Tildon, and L M Roeder, and J H Stevenson
January 1982, Neuroscience,
J T Tildon, and L M Roeder, and J H Stevenson
November 1974, Journal of neurochemistry,
J T Tildon, and L M Roeder, and J H Stevenson
March 1985, Brain research,
J T Tildon, and L M Roeder, and J H Stevenson
January 1986, Biulleten' eksperimental'noi biologii i meditsiny,
Copied contents to your clipboard!