Crystal structure of the crenarchaeal ExoIII AP endonuclease SisExoIII reveals a conserved disulfide bond endowing the protein with thermostability. 2017

Zhou Yan, and Zenglin Yuan, and Jinfeng Ni, and Lichuan Gu, and Yulong Shen
State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nan Rd., Jinan, 250100, PR China.

AP endonuclease recognizes and cleaves apurinic/apyrimidinic (AP) sites and plays a critical role in base excision repair. Many ExoIII and EndoIV family AP endonucleases have been characterized both biochemically and structurally in Eukaryote and Bacteria. However, relatively fewer have been studied in Euryarchaeota and there is no such report on an AP endonuclease from Crenarchaeota. Here we report, for the first time, the crystal structure of a crenarchaeal ExoIII AP endonuclease, SisExoIII, from Sulfolobus islandicus REY15A. SisExoIII comprises a two-layer core formed by 10 β-sheets and a shell formed by 9 surrounding α-helices. A disulfide bond connecting β8 and β9 is formed by Cys142 and Cys215. This intra-molecular linkage is conserved among crenarchaeal ExoIII homologs and site-directed mutagenesis revealed that it endows the protein with thermostability, however, disruption of the disulfide bond only has a slight effect on the AP endonuclease activity. We also observed that several key residues within the catalytic center including conserved Glu35 and Asn9 show different conformation compared with known ExoIII proteins and form various intra-molecular salt bridges. The protein possesses three putative DNA binding loops with higher flexibility and hydrophobicity than those of ExoIIIs from other organisms. These features may result in low AP endonuclease activity and defect of exonuclease activity of SisExoIII. The study has deepened our understanding in the structural basis of crenarchaeal ExoIII catalysis and clarified a role of the disulfide bond in maintaining protein thermostability.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004795 Enzyme Stability The extent to which an enzyme retains its structural conformation or its activity when subjected to storage, isolation, and purification or various other physical or chemical manipulations, including proteolytic enzymes and heat. Enzyme Stabilities,Stabilities, Enzyme,Stability, Enzyme
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D016944 Sulfolobus A genus of aerobic, chemolithotrophic, coccoid ARCHAEA whose organisms are thermoacidophilic. Its cells are highly irregular in shape, often lobed, but occasionally spherical. It has worldwide distribution with organisms isolated from hot acidic soils and water. Sulfur is used as an energy source. Sulfolobus islandicus,Sulfolobus metallicus,Sulfolobus tokodaii
D043603 DNA-(Apurinic or Apyrimidinic Site) Lyase A DNA repair enzyme that catalyses the excision of ribose residues at apurinic and apyrimidinic DNA sites that can result from the action of DNA GLYCOSYLASES. The enzyme catalyzes a beta-elimination reaction in which the C-O-P bond 3' to the apurinic or apyrimidinic site in DNA is broken, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate. This enzyme was previously listed under EC 3.1.25.2. Apurinic DNA Endonuclease,DNA Lyase (Apurinic or Apyrimidinic),Endodeoxyribonuclease (Apurinic or Apyrimidinic),AP Endonuclease,AP Lyase,Apurine-Apyrimidine Endonuclease,Apurinic Endonuclease,Apurine Apyrimidine Endonuclease,DNA Endonuclease, Apurinic,Endonuclease, AP,Endonuclease, Apurine-Apyrimidine,Endonuclease, Apurinic,Endonuclease, Apurinic DNA
D018360 Crystallography, X-Ray The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) X-Ray Crystallography,Crystallography, X Ray,Crystallography, Xray,X Ray Crystallography,Xray Crystallography,Crystallographies, X Ray,X Ray Crystallographies

Related Publications

Zhou Yan, and Zenglin Yuan, and Jinfeng Ni, and Lichuan Gu, and Yulong Shen
January 2007, Virology journal,
Zhou Yan, and Zenglin Yuan, and Jinfeng Ni, and Lichuan Gu, and Yulong Shen
March 2024, Metallomics : integrated biometal science,
Zhou Yan, and Zenglin Yuan, and Jinfeng Ni, and Lichuan Gu, and Yulong Shen
June 2010, Protein science : a publication of the Protein Society,
Zhou Yan, and Zenglin Yuan, and Jinfeng Ni, and Lichuan Gu, and Yulong Shen
November 2006, Cell,
Zhou Yan, and Zenglin Yuan, and Jinfeng Ni, and Lichuan Gu, and Yulong Shen
March 2000, Nature structural biology,
Zhou Yan, and Zenglin Yuan, and Jinfeng Ni, and Lichuan Gu, and Yulong Shen
April 2008, Proteins,
Zhou Yan, and Zenglin Yuan, and Jinfeng Ni, and Lichuan Gu, and Yulong Shen
December 1997, Protein science : a publication of the Protein Society,
Zhou Yan, and Zenglin Yuan, and Jinfeng Ni, and Lichuan Gu, and Yulong Shen
June 2001, Proteins,
Zhou Yan, and Zenglin Yuan, and Jinfeng Ni, and Lichuan Gu, and Yulong Shen
July 2018, Protein & cell,
Zhou Yan, and Zenglin Yuan, and Jinfeng Ni, and Lichuan Gu, and Yulong Shen
September 2005, Photosynthesis research,
Copied contents to your clipboard!