Interaction of palytoxin and cardiac glycosides on erythrocyte membrane and (Na+ + K+) ATPase. 1985

H Ozaki, and H Nagase, and N Urakawa

Palytoxin (PTX), at extremely low concentrations (0.01-1 nM), caused K+ release from rabbit erythrocytes. Among the various chemical compounds tested, cardiac glycosides potently inhibited the PTX-induced K+ release. The order of inhibitory potency (IC50) was cymarin (0.42 microM) greater than convallatoxin (0.9 microM) greater than ouabain (2.3 microM) greater than digitoxin (88 microM) greater than digoxin (90 microM). Their corresponding aglycones, even at 10 microM, did not inhibit the K+ release, but competitively antagonized the inhibitory effect of the glycosides. All these cardiotonic steroids inhibited the activity of (Na+ + K+)-ATPase prepared from hog cerebral cortex in narrow concentration ranges (IC50 = 0.15-2.4 microM), suggesting that the inhibition of K+ release is not related to their inhibitory potency on the (Na+ + K+)-ATPase activity, and the sugar moiety of cardiac glycosides is involved in the inhibition. On the other hand PTX, at higher concentrations (greater than 0.1 microM), inhibited the (Na+ + K+)-ATPase activity. However, this inhibitory effect of PTX was not antagonized by ouabain. It is suggested that, compared with ouabain, PTX has additional binding site(s) on the (Na+ + K+)-ATPase.

UI MeSH Term Description Entries
D009840 Oligomycins A closely related group of toxic substances elaborated by various strains of Streptomyces. They are 26-membered macrolides with lactone moieties and double bonds and inhibit various ATPases, causing uncoupling of phosphorylation from mitochondrial respiration. Used as tools in cytochemistry. Some specific oligomycins are RUTAMYCIN, peliomycin, and botrycidin (formerly venturicidin X). Oligomycin
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002301 Cardiac Glycosides Cyclopentanophenanthrenes with a 5- or 6-membered lactone ring attached at the 17-position and SUGARS attached at the 3-position. Plants they come from have long been used in congestive heart failure. They increase the force of cardiac contraction without significantly affecting other parameters, but are very toxic at larger doses. Their mechanism of action usually involves inhibition of the NA(+)-K(+)-EXCHANGING ATPASE and they are often used in cell biological studies for that purpose. Cardiac Glycoside,Cardiotonic Steroid,Cardiotonic Steroids,Glycoside, Cardiac,Glycosides, Cardiac,Steroid, Cardiotonic,Steroids, Cardiotonic
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003064 Cnidarian Venoms Venoms from jellyfish; CORALS; SEA ANEMONES; etc. They contain hemo-, cardio-, dermo- , and neuro-toxic substances and probably ENZYMES. They include palytoxin, sarcophine, and anthopleurine. Chironex Venoms,Jellyfish Venoms,Nematocyst Venoms,Sea Anemone Venoms,Chironex Venom,Cnidarian Venom,Jellyfish Venom,Portuguese Man-of-War Venom,Sea Anemone Venom,Portuguese Man of War Venom,Venom, Chironex,Venom, Cnidarian,Venom, Jellyfish,Venom, Portuguese Man-of-War,Venom, Sea Anemone,Venoms, Chironex,Venoms, Cnidarian,Venoms, Jellyfish,Venoms, Nematocyst,Venoms, Sea Anemone
D004910 Erythrocyte Membrane The semi-permeable outer structure of a red blood cell. It is known as a red cell 'ghost' after HEMOLYSIS. Erythrocyte Ghost,Red Cell Cytoskeleton,Red Cell Ghost,Erythrocyte Cytoskeleton,Cytoskeleton, Erythrocyte,Cytoskeleton, Red Cell,Erythrocyte Cytoskeletons,Erythrocyte Ghosts,Erythrocyte Membranes,Ghost, Erythrocyte,Ghost, Red Cell,Membrane, Erythrocyte,Red Cell Cytoskeletons,Red Cell Ghosts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000178 Acrylamides Colorless, odorless crystals that are used extensively in research laboratories for the preparation of polyacrylamide gels for electrophoresis and in organic synthesis, and polymerization. Some of its polymers are used in sewage and wastewater treatment, permanent press fabrics, and as soil conditioning agents.

Related Publications

H Ozaki, and H Nagase, and N Urakawa
January 1988, Methods in enzymology,
H Ozaki, and H Nagase, and N Urakawa
January 1988, Progress in clinical and biological research,
H Ozaki, and H Nagase, and N Urakawa
May 1985, European journal of pharmacology,
H Ozaki, and H Nagase, and N Urakawa
January 1984, Naunyn-Schmiedeberg's archives of pharmacology,
H Ozaki, and H Nagase, and N Urakawa
January 1989, Toxicon : official journal of the International Society on Toxinology,
H Ozaki, and H Nagase, and N Urakawa
January 1974, Annals of the New York Academy of Sciences,
H Ozaki, and H Nagase, and N Urakawa
April 2007, The Journal of membrane biology,
H Ozaki, and H Nagase, and N Urakawa
November 1997, Annals of the New York Academy of Sciences,
H Ozaki, and H Nagase, and N Urakawa
June 1997, FEBS letters,
H Ozaki, and H Nagase, and N Urakawa
September 1989, Biological psychiatry,
Copied contents to your clipboard!