Lipids characterization of ultrasound and microwave processed germinated sorghum. 2017

Sadia Hassan, and Muhammad Imran, and Nazir Ahmad, and Muhammad Kamran Khan
Department of Food Science, Nutrition & Home Economics, Government College University, Faisalabad, 38000, Pakistan.

BACKGROUND Cereal crops and oilseeds provide diverse pool of fatty acids with characteristic properties. Sorghum (Sorghum bicolor (L.) Moench) provides the staple food with serving as main source of energy and protein. Germination of sorghum generally increases the nutritive value of seeds and the effects of germination on lipids composition of seeds vary greatly with processing conditions. Therefore, the current study was conducted to compare the effect of emerging processing techniques such as ultrasound (US) and microwave (MW) on fatty acids composition and oil yield of sorghum seeds before and after germination. METHODS Initially sorghum grains were soaked with 5% NaOCl (sodium hypochlorite) for surface sterilization. Afterwards, grains were soaked in excess water for 22 h at room temperature and were divided into four portions. The first portion (100 g grains) was subjected to germination without applying any microwave and ultrasonic treatment (T0). Second portion was further divided into four groups (T1, T2, T3, T4) (100 g of each group) and grains were subjected to ultrasonic treatments using two different ultrasonic intensities (US1: 40%; US2: 60%) within range of 0-100% and with two different time durations (tUS1: 5 min; tUS2: 10 min) at constant temperature. Third portion was also divided into four groups (T1, T2, T3, T4) (100 g of each group) and exposed to microwave treatments at two different power levels (MW1: 450 watt; MW2: 700 watt) within the range of 100-900 W for two different time durations (tMW1: 15 s; tMW2: 30s). Similarly, fourth portion was divided into four groups (T1, T2, T3, T4) (100 g of each group). Each group was exposed to both MW (MW1, MW2) (100-900 watt power) & US (US1, US2) (0-100% intensity) treatments at two different time levels (tUS, tMW). Then, germination was carried out and pre-treated raw and pre-treated germinated sorghum grains were analyzed for total oil yield, fatty acid composition and unsaturated fatty acids (Un-SFA)/saturated fatty acids (SFA) ratio by gas chromatography. RESULTS The results revealed that oil yield in sorghum before and after germination ranged from 6.55 to 7.84% and 6.28 to 7.57%, respectively. All the microwave and ultrasound processed samples showed significant difference in oil yield than the raw sorghum grains. The highest tested yield was 7.84 ± 0.31% when combination of microwave power (700 W) and ultrasound intensity (60%) was applied for 30s and 10 min, respectively. The results further demonstrate that the raw sorghum contained palmitic (13.73 ± 0.10%), palmitoleic (0.43 ± 0.02%), stearic (1.07 ± 0.04%), oleic (37.15 ± 0.10%), linoleic (43.33 ± 0.21%), linolenic (1.55 ± 0.04%), arachidic acid (0.13 ± 0.01%) and eicosenoic acid (0.37 ± 0.02%), respectively. The highest fatty acid percentage for palmitic, stearic and arachidic acid was 13.75 ± 0.07%, 1.11 ± 0.09% and 0.15 ± 0.03% at 60% US intensity for 10 min (T4), respectively. Maximum amount observed was 1.60 ± 0.09% of linolenic acid while amount of eicosenoic acid decreased from 0.37 ± 0.02% to 0.31 ± 0.01% after processing. In case of applying combination of microwave and sonication treatments, the change in eicosenoic acid increased from 0.35 ± 0.02% to 0.40 ± 0.04% while there was no significant change in other fatty acids. The ungerminated sorghum oil possessed 14.93-15.05% and 82.83-83.12% of SFA and Un-SFA, respectively. After germination, percentage of saturated fatty acids increased (16.4-16.55%) while decreased for unsaturated fatty acids (80.13-80.56%) were noted. CONCLUSIONS The results of the present study conclude that the yield of oil from sorghum grains increased by emerging processing. Fatty acid analysis of sorghum oil suggested that pre-treatment strategies will not affect the quality of the oil with respect to essential fatty acids content. Overall, the composition of saturated fatty acid in germinated grain is improved than ungerminated grains after processing.

UI MeSH Term Description Entries
D008872 Microwaves That portion of the electromagnetic spectrum from the UHF (ultrahigh frequency) radio waves and extending into the INFRARED RAYS frequencies. EHF Waves,Extremely High Frequency Radio Waves,Micro Wave,Micro Waves,Ultrahigh Frequency Waves,Microwave Radiation,EHF Wave,Micro Waves,Microwave,Microwave Radiations,Radiation, Microwave,Ultrahigh Frequency Wave,Wave, EHF,Wave, Micro,Wave, Ultrahigh Frequency,Waves, Micro
D010938 Plant Oils Oils derived from plants or plant products. Oils, Plant,Oils, Vegetable,Plant Oil,Vegetable Oil,Vegetable Oils,Oil, Plant,Oil, Vegetable
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000069453 Ultrasonic Waves Oscillating sound wave with a frequency higher than the upper limit of the human hearing range. LIPUS,Low Intensity Pulsed Ultrasound,Low Intensity Pulsed Ultrasound Radiation,Low-Intensity Pulsed Ultrasound (LIPUS),Pulsed Ultrasound,Ultrasonic Vibration,Ultrasound Radiation,Ultrasound Waves,Low Intensity Pulsed Ultrasound (LIPUS),Low-Intensity Pulsed Ultrasounds (LIPUS),Pulsed Ultrasound, Low-Intensity (LIPUS),Pulsed Ultrasounds,Pulsed Ultrasounds, Low-Intensity (LIPUS),Radiation, Ultrasound,Ultrasonic Vibrations,Ultrasonic Wave,Ultrasound Wave,Ultrasound, Low-Intensity Pulsed (LIPUS),Ultrasound, Pulsed,Ultrasounds, Low-Intensity Pulsed (LIPUS),Ultrasounds, Pulsed,Vibration, Ultrasonic,Vibrations, Ultrasonic,Wave, Ultrasonic,Wave, Ultrasound,Waves, Ultrasonic,Waves, Ultrasound
D045868 Sorghum A plant genus of the family POACEAE. The grain is used for FOOD and for ANIMAL FEED. This should not be confused with KAFFIR LIME or with KEFIR milk product. Johnsongrass,Kaffir Corn,Kafir,Sorghum bicolor,Sorghum halepense,Sudangrass,Corn, Kaffir,Corns, Kaffir,Johnsongrasses,Kaffir Corns,Kafirs,Sorghum bicolors,Sorghum halepenses,Sorghums,Sudangrasses,bicolors, Sorghum,halepenses, Sorghum
D050356 Lipid Metabolism Physiological processes in biosynthesis (anabolism) and degradation (catabolism) of LIPIDS. Metabolism, Lipid
D018525 Germination The initial stages of the growth of SEEDS into a SEEDLINGS. The embryonic shoot (plumule) and embryonic PLANT ROOTS (radicle) emerge and grow upwards and downwards respectively. Food reserves for germination come from endosperm tissue within the seed and/or from the seed leaves (COTYLEDON). (Concise Dictionary of Biology, 1990) Germinations

Related Publications

Sadia Hassan, and Muhammad Imran, and Nazir Ahmad, and Muhammad Kamran Khan
November 1970, European journal of biochemistry,
Sadia Hassan, and Muhammad Imran, and Nazir Ahmad, and Muhammad Kamran Khan
February 2013, Journal of food science and technology,
Sadia Hassan, and Muhammad Imran, and Nazir Ahmad, and Muhammad Kamran Khan
January 1991, World journal of microbiology & biotechnology,
Sadia Hassan, and Muhammad Imran, and Nazir Ahmad, and Muhammad Kamran Khan
January 2023, Food science and technology international = Ciencia y tecnologia de los alimentos internacional,
Sadia Hassan, and Muhammad Imran, and Nazir Ahmad, and Muhammad Kamran Khan
July 2017, Journal of the science of food and agriculture,
Sadia Hassan, and Muhammad Imran, and Nazir Ahmad, and Muhammad Kamran Khan
January 2021, Journal of analytical methods in chemistry,
Sadia Hassan, and Muhammad Imran, and Nazir Ahmad, and Muhammad Kamran Khan
March 2015, Ultrasonics sonochemistry,
Sadia Hassan, and Muhammad Imran, and Nazir Ahmad, and Muhammad Kamran Khan
November 1970, European journal of biochemistry,
Sadia Hassan, and Muhammad Imran, and Nazir Ahmad, and Muhammad Kamran Khan
April 1992, Trends & techniques in the contemporary dental laboratory,
Sadia Hassan, and Muhammad Imran, and Nazir Ahmad, and Muhammad Kamran Khan
November 1965, Journal of the science of food and agriculture,
Copied contents to your clipboard!