Retroviral insertional mutagenesis in murine mammary cancer. 1985

R Nusse, and A van Ooyen, and F Rijsewijk, and M van Lohuizen, and E Schuuring, and L van't Veer

We are attempting to identify cellular oncogenes activated in mammary tumours by using the mouse mammary tumour virus (MMTV) as an insertional mutagen. MMTV, a retrovirus lacking a host cell-derived viral oncogene, induces adenocarcinomas of the mammary gland after a long latency period. The tumours are clonal outgrowths of cells carrying one or more integrated MMTV proviral copies. We have cloned an integrated MMTV provirus with its adjacent chromosomal DNA and we have established that the insertion site was part of a domain of the mouse genome in which MMTV proviruses are inserted in many different tumours. A gene within this domain, called int-1 is transcriptionally activated as a consequence of proviral integration. We have proposed that int-1 is a cellular oncogene for mammary tumours. Proviral activation of int-1 occurs in cis, over distances of up to 10 kilobases and is presumably caused by the transcriptional enhancer present on the MMTV long terminal repeat. The putative int-1 mammary oncogene has been subjected to a detailed structural analysis by S1 mapping and DNA sequencing. It encodes a protein that is highly conserved between mouse and man. The protein encoding domain of the gene is distributed over four exons which are demarcated by the insertion sites of MMTV proviruses found in mammary tumours. Some insertions, however, are found in the transcriptional unit of int-1, but these insertions do not disrupt the protein encoding domain of the gene.

UI MeSH Term Description Entries
D008324 Mammary Tumor Virus, Mouse The type species of BETARETROVIRUS commonly latent in mice. It causes mammary adenocarcinoma in a genetically susceptible strain of mice when the appropriate hormonal influences operate. Bittner Virus,Mammary Cancer Virus,Mouse mammary tumor virus,Mammary Tumor Viruses, Mouse
D008325 Mammary Neoplasms, Experimental Experimentally induced mammary neoplasms in animals to provide a model for studying human BREAST NEOPLASMS. Experimental Mammary Neoplasms,Neoplasms, Experimental Mammary,Experimental Mammary Neoplasm,Mammary Neoplasm, Experimental,Neoplasm, Experimental Mammary
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA

Related Publications

R Nusse, and A van Ooyen, and F Rijsewijk, and M van Lohuizen, and E Schuuring, and L van't Veer
January 2003, Advances in cancer research,
R Nusse, and A van Ooyen, and F Rijsewijk, and M van Lohuizen, and E Schuuring, and L van't Veer
January 1996, Current topics in microbiology and immunology,
R Nusse, and A van Ooyen, and F Rijsewijk, and M van Lohuizen, and E Schuuring, and L van't Veer
July 2023, Cold Spring Harbor perspectives in biology,
R Nusse, and A van Ooyen, and F Rijsewijk, and M van Lohuizen, and E Schuuring, and L van't Veer
January 2004, Methods in cell biology,
R Nusse, and A van Ooyen, and F Rijsewijk, and M van Lohuizen, and E Schuuring, and L van't Veer
January 2011, Methods in cell biology,
R Nusse, and A van Ooyen, and F Rijsewijk, and M van Lohuizen, and E Schuuring, and L van't Veer
January 2005, Cancer science,
R Nusse, and A van Ooyen, and F Rijsewijk, and M van Lohuizen, and E Schuuring, and L van't Veer
October 1985, Proceedings of the National Academy of Sciences of the United States of America,
R Nusse, and A van Ooyen, and F Rijsewijk, and M van Lohuizen, and E Schuuring, and L van't Veer
May 1996, Biochimica et biophysica acta,
R Nusse, and A van Ooyen, and F Rijsewijk, and M van Lohuizen, and E Schuuring, and L van't Veer
January 1991, Current topics in microbiology and immunology,
R Nusse, and A van Ooyen, and F Rijsewijk, and M van Lohuizen, and E Schuuring, and L van't Veer
November 2005, Oncogene,
Copied contents to your clipboard!