Differentiation of catecholaminergic cells in cultures of embryonic avian sensory ganglia. 1985

Z G Xue, and J Smith, and N M Le Douarin

From the results of previous studies in which developing peripheral ganglia from quail embryos were transplanted into younger chicken embryo hosts, we concluded that spinal and cranial sensory ganglia contain dormant precursors with autonomic potentialities. Here we describe the differentiation of these precursors in vitro, from dorsal root and nodose ganglion cell suspensions. Dorsal root ganglia were removed from quail embryos at 9 to 15 days of incubation, dissociated to single cells, and grown in tissue culture. The differentiation of cells with autonomic features was followed by monitoring properties associated with the adrenergic phenotype (absent from quail sensory ganglia during normal embryonic development). Provided that the medium was supplemented with chicken embryo extract, numerous cells displaying tyrosine hydroxylase immunoreactivity could be detected from day 4 onward. They possessed long, multiple processes but appeared morphologically distinct from primary sensory neurons. The catalytic activity of tyrosine hydroxylase and of other enzymes required for catecholamine production was demonstrated in the cultures by glyoxylic acid-induced histofluorescence and by radiochemical measurement of the conversion of exogenous tyrosine to norepinephrine. A large proportion of tyrosine hydroxylase-positive cells were found to incorporate [3H]thymidine before and after differentiating. In contrast, recognizable sensory neurons never exhibited adrenergic properties and did not divide. Qualitatively similar results were obtained with cultures of dissociated nodose ganglia. These findings lend further weight to the assumption that latent autonomic precursors are included in the non-neuronal compartment of sensory ganglia.

UI MeSH Term Description Entries
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003370 Coturnix A genus of BIRDS in the family Phasianidae, order GALLIFORMES, containing the common European and other Old World QUAIL. Japanese Quail,Coturnix japonica,Japanese Quails,Quail, Japanese,Quails, Japanese
D005724 Ganglia Clusters of multipolar neurons surrounded by a capsule of loosely organized CONNECTIVE TISSUE located outside the CENTRAL NERVOUS SYSTEM.
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000320 Adrenergic Fibers Nerve fibers liberating catecholamines at a synapse after an impulse. Sympathetic Fibers,Adrenergic Fiber,Fiber, Adrenergic,Fiber, Sympathetic,Fibers, Adrenergic,Fibers, Sympathetic,Sympathetic Fiber
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase

Related Publications

Z G Xue, and J Smith, and N M Le Douarin
February 1993, Journal of neuroscience research,
Z G Xue, and J Smith, and N M Le Douarin
March 2004, Developmental dynamics : an official publication of the American Association of Anatomists,
Z G Xue, and J Smith, and N M Le Douarin
October 1976, Experimental cell research,
Z G Xue, and J Smith, and N M Le Douarin
February 1975, Journal of embryology and experimental morphology,
Z G Xue, and J Smith, and N M Le Douarin
January 1985, Developmental biology,
Z G Xue, and J Smith, and N M Le Douarin
March 1972, Proceedings of the National Academy of Sciences of the United States of America,
Z G Xue, and J Smith, and N M Le Douarin
May 1955, The American journal of anatomy,
Z G Xue, and J Smith, and N M Le Douarin
November 2001, Developmental biology,
Z G Xue, and J Smith, and N M Le Douarin
April 1994, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!