Binding stoichiometry and structural mapping of the epsilon polypeptide of chloroplast coupling factor 1. 1985

M L Richter, and B Snyder, and R E McCarty, and G G Hammes

Fluorescent probes were attached to the single sulfhydryl residue on the isolated epsilon polypeptide of chloroplast coupling factor 1 (CF1), and the modified polypeptide was reconstituted with the epsilon-deficient enzyme. A binding stoichiometry of one epsilon polypeptide per CF1 was obtained. This stoichiometry corresponded to a maximum inhibition of the Ca2+-dependent ATPase activity of the enzyme induced by epsilon removal. Resonance energy transfer between the modified epsilon polypeptide and fluorescent probes attached to various other sites on the enzyme allowed distance measurements between these sites and the epsilon polypeptide. The epsilon-sulfhydryl is nearly equidistant from both the disulfide (23 A) and the dark-accessible sulfhydryl (26 A) of the gamma subunit. Measurement of the distance between epsilon and the light-accessible gamma-sulfhydryl was not possible due to an apparent exclusion of modified epsilon from epsilon-deficient enzyme after modification of the light-accessible site. The distances measured between epsilon and the nucleotide binding sites on the enzyme were 62, 66, and 49 A for sites 1, 2, and 3, respectively. These measurements place the epsilon subunit in close physical proximity to the sulfhydryl-containing domains of the gamma subunit and approximately 40 A from the membrane surface. Enzyme activity measurements also indicated a close association between the epsilon and gamma subunits: epsilon removal caused a marked increase in accessibility of the gamma-disulfide bond to thiol reagents and exposed a trypsin-sensitive site on the gamma subunit. Either disulfide bond reduction or trypsin cleavage of gamma significantly enhanced the Ca2+-ATPase activity of the epsilon-deficient enzyme. Thus, the epsilon and gamma polypeptides of coupling factor 1 are closely linked, both physically and functionally.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004735 Energy Transfer The transfer of energy of a given form among different scales of motion. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed). It includes the transfer of kinetic energy and the transfer of chemical energy. The transfer of chemical energy from one molecule to another depends on proximity of molecules so it is often used as in techniques to measure distance such as the use of FORSTER RESONANCE ENERGY TRANSFER. Transfer, Energy
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

M L Richter, and B Snyder, and R E McCarty, and G G Hammes
November 1984, Biochemistry,
M L Richter, and B Snyder, and R E McCarty, and G G Hammes
February 1982, Biochemistry,
M L Richter, and B Snyder, and R E McCarty, and G G Hammes
January 1983, The Journal of biological chemistry,
M L Richter, and B Snyder, and R E McCarty, and G G Hammes
June 1984, The Journal of biological chemistry,
M L Richter, and B Snyder, and R E McCarty, and G G Hammes
October 1990, Biochemistry,
M L Richter, and B Snyder, and R E McCarty, and G G Hammes
May 1990, Biochimica et biophysica acta,
M L Richter, and B Snyder, and R E McCarty, and G G Hammes
July 1986, Biochemistry,
M L Richter, and B Snyder, and R E McCarty, and G G Hammes
April 1985, Biochemistry,
M L Richter, and B Snyder, and R E McCarty, and G G Hammes
March 1991, The Journal of biological chemistry,
M L Richter, and B Snyder, and R E McCarty, and G G Hammes
July 1975, Biochemistry,
Copied contents to your clipboard!