Receptor-mediated endocytosis. 1986

P Stahl, and A L Schwartz

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D009940 Organoids An organization of cells into an organ-like structure. Organoids can be generated in culture, e.g., self-organized three-dimensional tissue structures derived from STEM CELLS (see MICROPHYSIOLOGICAL SYSTEMS). They are also found in certain NEOPLASMS. Organoid
D011992 Endosomes Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface. Receptosomes,Endosome,Receptosome
D002966 Clathrin The main structural coat protein of COATED VESICLES which play a key role in the intracellular transport between membranous organelles. Each molecule of clathrin consists of three light chains (CLATHRIN LIGHT CHAINS) and three heavy chains (CLATHRIN HEAVY CHAINS) that form a structure called a triskelion. Clathrin also interacts with cytoskeletal proteins.
D003034 Coated Pits, Cell-Membrane Specialized regions of the cell membrane composed of pits coated with a bristle covering made of the protein CLATHRIN. These pits are the entry route for macromolecules bound by cell surface receptors. The pits are then internalized into the cytoplasm to form the COATED VESICLES. Bristle-Coated Pits,Cell-Membrane Coated Pits,Bristle Coated Pits,Bristle-Coated Pit,Cell Membrane Coated Pits,Cell-Membrane Coated Pit,Coated Pit, Cell-Membrane,Coated Pits, Cell Membrane,Pit, Bristle-Coated,Pit, Cell-Membrane Coated,Pits, Bristle-Coated,Pits, Cell-Membrane Coated
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

P Stahl, and A L Schwartz
March 1989, Harefuah,
P Stahl, and A L Schwartz
November 1980, The American journal of clinical nutrition,
P Stahl, and A L Schwartz
November 1985, The Biochemical journal,
P Stahl, and A L Schwartz
December 1995, Pediatric research,
P Stahl, and A L Schwartz
July 2005, Proceedings of the National Academy of Sciences of the United States of America,
P Stahl, and A L Schwartz
January 2006, Sub-cellular biochemistry,
P Stahl, and A L Schwartz
January 1984, Vutreshni bolesti,
P Stahl, and A L Schwartz
June 1996, FEBS letters,
P Stahl, and A L Schwartz
September 2014, Biochemistry. Biokhimiia,
P Stahl, and A L Schwartz
November 1980, JAMA,
Copied contents to your clipboard!