Somatostatin-like immunoreactivity in neurons, nerve terminals, and fibers of the cat spinal cord. 1986

T L Krukoff, and J Ciriello, and F R Calaresu

The distribution of somatostatin-like immunoreactivity (SS) was studied in the spinal cord of untreated cats and of cats that had received colchicine at all levels of the cord. In the dorsal horn small (less than 15 microns in diameter), round neurons were found in Rexed laminae II and III at all levels. At all levels laminae IV-VI contained smaller numbers of immunoreactive neurons that were medium (between 15 and 25 microns in diameter) to large (greater than 25 microns in diameter) in size. In addition, small numbers of medium-sized neurons were observed at the dorsal and dorsomedial borders of the gray and white matter in segments C1-5. In the sacral cord (S1-3), a group of medium-sized bipolar neurons was found in the dorsolateral funiculus. In transverse sections the processes of the neurons in these two latter groups travelled in a direction parallel to the border of the gray and white matter. In the intermediate and central gray matter, in addition to the immunoreactive neurons found in the region of the intermediolateral nucleus and nucleus intercalatus of lamina VII in segments C8 to L4 (Krukoff et al., '85a), lamina VII contained immunoreactive neurons at all levels with the largest number occurring in the thoracic cord. These neurons were medium to large in size and were generally multipolar with processes travelling in all directions. Multipolar small immunoreactive neurons were also found in the central gray region (lamina X) in the thoracic and upper lumbar cord. Finally, small numbers of neurons containing SS were found in the ventral horn of the cervical and upper thoracic cord. These multipolar neurons were medium to large in size. The distribution of nerve terminals and fibers containing SS was similar to that previously described in mice, rats, guinea pigs, and primates. Although the function of somatostatin in the spinal cord is not known, its presence in neurons with short processes suggests that it may act to modify local activity in the regions where it is found, including areas involved in sensory, visceromotor, and motor functions.

UI MeSH Term Description Entries
D008297 Male Males
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

T L Krukoff, and J Ciriello, and F R Calaresu
December 1988, Archives of histology and cytology,
T L Krukoff, and J Ciriello, and F R Calaresu
January 1980, Arkhiv anatomii, gistologii i embriologii,
T L Krukoff, and J Ciriello, and F R Calaresu
August 1988, Journal of the autonomic nervous system,
T L Krukoff, and J Ciriello, and F R Calaresu
November 1987, Brain research,
T L Krukoff, and J Ciriello, and F R Calaresu
June 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T L Krukoff, and J Ciriello, and F R Calaresu
November 1977, Brain research,
T L Krukoff, and J Ciriello, and F R Calaresu
June 1987, The Journal of comparative neurology,
T L Krukoff, and J Ciriello, and F R Calaresu
January 1963, Journal of neurophysiology,
T L Krukoff, and J Ciriello, and F R Calaresu
May 1984, Neuroscience letters,
Copied contents to your clipboard!