[Atracurium: neuromuscular blockade in repeated administration]. 1985

D Kube, and F T Schuh

The neuromuscular blocking action of repeated injections of atracurium and vecuronium was studied in 74 surgical patients during balanced anaesthesia (methohexitone or etomidate, intubation after suxamethonium, fentanyl, droperidol, N2O). The initial bolus dose (ID) of atracurium was 0.25 mg/kg and of vecuronium 0.05 mg/kg followed by repeated increments (RD) of atracurium 0.1 mg/kg and vecuronium 0.0125 mg/kg when neuromuscular function (EMG) had recovered to about 30% of pre-relaxant control. Dose-response relationships revealed atracurium to be about 1/5 as potent as vecuronium; the ED50 of atracurium was 0.13 +/- 0.03 mg/kg and of vecuronium 0.023 +/- 0.007 mg/kg. The ID of both relaxants produced a neuromuscular blockade of about 90% within 4 min. The duration from the time of injection to 30% recovery was slightly longer in atracurium 26 +/- 9 min. In all patients the RD produced within 3.5 min satisfactory muscle relaxation with a neuromuscular block of about 85%. The mean duration of atracurium (18 min) was 5-10 min longer than of vecuronium (12 min). To maintain good surgical relaxation (more than 70% blockade) atracurium 0.32 mg/kg X h and vecuronium 0.056 mg/kg X h were required. No cumulation could be measured after repeated injections. The recovery time of atracurium and vecuronium at the end of anaesthesia was 10-12 min. Neither cardiovascular side-effects nor signs of histamine release were observed after both relaxants in our particular dose range. It is concluded, that atracurium is a favourable blocker for anaesthetic practice: The time of onset is approximately the same compared with vecuronium. The duration of action, however, is slightly longer but still truly intermediate long.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D008297 Male Males
D008657 Metabolic Clearance Rate Volume of biological fluid completely cleared of drug metabolites as measured in unit time. Elimination occurs as a result of metabolic processes in the kidney, liver, saliva, sweat, intestine, heart, brain, or other site. Total Body Clearance Rate,Clearance Rate, Metabolic,Clearance Rates, Metabolic,Metabolic Clearance Rates,Rate, Metabolic Clearance,Rates, Metabolic Clearance
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009466 Neuromuscular Blocking Agents Drugs that interrupt transmission of nerve impulses at the skeletal neuromuscular junction. They can be of two types, competitive, stabilizing blockers (NEUROMUSCULAR NONDEPOLARIZING AGENTS) or noncompetitive, depolarizing agents (NEUROMUSCULAR DEPOLARIZING AGENTS). Both prevent acetylcholine from triggering the muscle contraction and they are used as anesthesia adjuvants, as relaxants during electroshock, in convulsive states, etc. Neuromuscular Blocker,Neuromuscular Blocking Agent,Neuromuscular Blockers,Agent, Neuromuscular Blocking,Agents, Neuromuscular Blocking,Blocker, Neuromuscular,Blockers, Neuromuscular,Blocking Agent, Neuromuscular,Blocking Agents, Neuromuscular
D009469 Neuromuscular Junction The synapse between a neuron and a muscle. Myoneural Junction,Nerve-Muscle Preparation,Junction, Myoneural,Junction, Neuromuscular,Junctions, Myoneural,Junctions, Neuromuscular,Myoneural Junctions,Nerve Muscle Preparation,Nerve-Muscle Preparations,Neuromuscular Junctions,Preparation, Nerve-Muscle,Preparations, Nerve-Muscle
D010197 Pancuronium A bis-quaternary steroid that is a competitive nicotinic antagonist. As a neuromuscular blocking agent it is more potent than CURARE but has less effect on the circulatory system and on histamine release. Pancuronium Bromide,Pancuronium Curamed,Pancuronium Organon,Pavulon,Bromide, Pancuronium
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004334 Drug Administration Schedule Time schedule for administration of a drug in order to achieve optimum effectiveness and convenience. Administration Schedule, Drug,Administration Schedules, Drug,Drug Administration Schedules,Schedule, Drug Administration,Schedules, Drug Administration

Related Publications

D Kube, and F T Schuh
March 1986, Canadian Anaesthetists' Society journal,
D Kube, and F T Schuh
September 1986, Canadian Anaesthetists' Society journal,
D Kube, and F T Schuh
June 1995, Der Anaesthesist,
D Kube, and F T Schuh
October 1990, American journal of veterinary research,
D Kube, and F T Schuh
January 1984, Anaesthesia,
D Kube, and F T Schuh
September 1985, Anaesthesia,
D Kube, and F T Schuh
March 1990, Canadian journal of anaesthesia = Journal canadien d'anesthesie,
D Kube, and F T Schuh
January 1995, Anaesthesiologie und Reanimation,
D Kube, and F T Schuh
January 1983, British journal of anaesthesia,
D Kube, and F T Schuh
January 1992, Anaesthesiologie und Reanimation,
Copied contents to your clipboard!