Photoinduced free radicals from chlorpromazine and related phenothiazines: relationship to phenothiazine-induced photosensitization. 1985

C F Chignell, and A G Motten, and G R Buettner

Chlorpromazine and several other related phenothiazines are known to cause both phototoxic and photoallergic reactions in the skin and eyes of patients receiving these drugs. While the detailed mechanisms of photosensitization are not known, it is obvious that the first step must be the absorption of light by the drug, its metabolites, or photoproducts, or possibly an induced endogenous chemical. In this review, the free-radical photochemistry of phenothiazines is described, and the evidence for the involvement of photoinduced free radicals in photosensitization is examined. Upon irradiation chlorpromazine yields a variety of free radicals including the corresponding cation radical (via photoionization), the neutral promazinyl radical and a chlorine atom (Cl.) (via homolytic cleavage), and a sulfur-centered peroxy radical. The chlorpromazine cation radical is probably responsible for some of the observed in vitro phototoxic effects of this drug. However, it seems unlikely that the cation radical is involved in phototoxicity in vivo, since photoionization only occurs when chlorpromazine is excited into the S2 level (lambda ex less than 280 nm). The promazinyl radical is a more likely candidate for the phototoxic species both in vivo and in vitro. In addition, this radical can react covalently with proteins and other macromolecules to yield antigens which could be responsible for the photoallergic response to chlorpromazine. Neither oxygen-derived radicals nor singlet oxygen (1O2*), appear to be important in chlorpromazine photosensitization. In contrast, it would seem that promazine-induced phototoxicity may result in part from the generation of superoxide (O2-.).(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D010782 Photolysis Chemical bond cleavage reactions resulting from absorption of radiant energy. Photodegradation
D010787 Photosensitivity Disorders Abnormal responses to sunlight or artificial light due to extreme reactivity of light-absorbing molecules in tissues. It refers almost exclusively to skin photosensitivity, including sunburn, reactions due to repeated prolonged exposure in the absence of photosensitizing factors, and reactions requiring photosensitizing factors such as photosensitizing agents and certain diseases. With restricted reference to skin tissue, it does not include photosensitivity of the eye to light, as in photophobia or photosensitive epilepsy. Actinic Reticuloid Syndrome,Dermatitis, Actinic,Photodermatitis,Chronic Actinic Dermatitis,Photosensitization,Actinic Dermatitides,Actinic Dermatitides, Chronic,Actinic Dermatitis,Actinic Dermatitis, Chronic,Actinic Reticuloid Syndromes,Chronic Actinic Dermatitides,Dermatitides, Actinic,Dermatitides, Chronic Actinic,Dermatitis, Chronic Actinic,Disorder, Photosensitivity,Disorders, Photosensitivity,Photodermatitides,Photosensitivity Disorder,Reticuloid Syndrome, Actinic,Reticuloid Syndromes, Actinic,Syndrome, Actinic Reticuloid,Syndromes, Actinic Reticuloid
D002746 Chlorpromazine The prototypical phenothiazine antipsychotic drug. Like the other drugs in this class chlorpromazine's antipsychotic actions are thought to be due to long-term adaptation by the brain to blocking DOPAMINE RECEPTORS. Chlorpromazine has several other actions and therapeutic uses, including as an antiemetic and in the treatment of intractable hiccup. Aminazine,Chlorazine,Chlordelazine,Chlorpromazine Hydrochloride,Contomin,Fenactil,Largactil,Propaphenin,Thorazine,Hydrochloride, Chlorpromazine
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006878 Hydroxides Inorganic compounds that contain the OH- group.
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion
D014150 Antipsychotic Agents Agents that control agitated psychotic behavior, alleviate acute psychotic states, reduce psychotic symptoms, and exert a quieting effect. They are used in SCHIZOPHRENIA; senile dementia; transient psychosis following surgery; or MYOCARDIAL INFARCTION; etc. These drugs are often referred to as neuroleptics alluding to the tendency to produce neurological side effects, but not all antipsychotics are likely to produce such effects. Many of these drugs may also be effective against nausea, emesis, and pruritus. Antipsychotic,Antipsychotic Agent,Antipsychotic Drug,Antipsychotic Medication,Major Tranquilizer,Neuroleptic,Neuroleptic Agent,Neuroleptic Drug,Neuroleptics,Tranquilizing Agents, Major,Antipsychotic Drugs,Antipsychotic Effect,Antipsychotic Effects,Antipsychotics,Major Tranquilizers,Neuroleptic Agents,Neuroleptic Drugs,Tranquillizing Agents, Major,Agent, Antipsychotic,Agent, Neuroleptic,Drug, Antipsychotic,Drug, Neuroleptic,Effect, Antipsychotic,Major Tranquilizing Agents,Major Tranquillizing Agents,Medication, Antipsychotic,Tranquilizer, Major
D017665 Hydroxyl Radical The univalent radical OH. Hydroxyl radical is a potent oxidizing agent.

Related Publications

C F Chignell, and A G Motten, and G R Buettner
May 1959, Nature,
C F Chignell, and A G Motten, and G R Buettner
June 1967, Tetrahedron letters,
C F Chignell, and A G Motten, and G R Buettner
August 1958, Biochimica et biophysica acta,
C F Chignell, and A G Motten, and G R Buettner
December 1962, Psychopharmacology Service Center bulletin,
C F Chignell, and A G Motten, and G R Buettner
April 1969, Psychopharmacology bulletin,
C F Chignell, and A G Motten, and G R Buettner
September 1972, Journal of medicinal chemistry,
C F Chignell, and A G Motten, and G R Buettner
May 1960, Archives internationales de pharmacodynamie et de therapie,
C F Chignell, and A G Motten, and G R Buettner
December 1960, Archives internationales de pharmacodynamie et de therapie,
C F Chignell, and A G Motten, and G R Buettner
June 1940, Canadian journal of comparative medicine and veterinary science,
Copied contents to your clipboard!