Peroxisome proliferator-activated receptor (PPAR) isoforms are differentially expressed in peri-implantation porcine conceptuses. 2017

Agnieszka Blitek, and Magdalena Szymanska
Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland. Electronic address: a.blitek@pan.olsztyn.pl.

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family of ligand-dependent transcription factors. PPARs are critical regulators of glucose homeostasis and lipid metabolism, and affect cell proliferation and differentiation. In the current study, we examined (1) the profiles of PPARA, PPARD, and PPARG mRNA expression and DNA binding activity in porcine conceptuses collected on Days 10-11 (spherical and tubular conceptuses), 11-12 (filamentous conceptuses), 13-14, and 15-16 (elongated conceptuses) of pregnancy, (2) the presence of PPARA, PPARD, and PPARG proteins in Days 10, 12, and 15 conceptuses. Moreover, we analyzed the abundance of retinoid X receptor (RXR; PPARs heterodimer partner) transcripts as well as the correlation between PPARs mRNA expression and the expression of genes important for and/or associated with elongation of porcine conceptuses: aromatase (CYP19A1), prostaglandin endoperoxide synthase 2 (PTGS2), glucose transporter 1 (SLC2A1), and interleukin 1B (IL1B). PPARA mRNA expression in conceptuses did not change during Days 10-14 of gestation, but was greater on Days 15-16 compared to Days 10-11 (P < 0.05). A considerable increase in PPARD and PPARG mRNA expression was observed in filamentous conceptuses from Days 11-12 compared to spherical and tubular conceptuses from Days 10-11 (P < 0.01), followed by a decrease on Days 13-14 and 15-16 (P < 0.05). PPARA, PPARD, and PPARG proteins were present in conceptus tissue demonstrating nuclear localization clearly visible on Days 12 and 15 of pregnancy. DNA binding activity of the PPARD isoform was greater in filamentous conceptuses from Days 11-12 than in spherical and tubular conceptuses from Days 10-11 (P < 0.01). Moreover, concentrations of active PPARD and PPARG proteins in nuclear fractions of conceptus tissue were greater on Days 11-12 compared to Days 13-14 and 15-16 of pregnancy (P < 0.05). RXRA, RXRD, and RXRG mRNA expression in conceptuses increased on Days 11-12 compared to Days 10-11 (P < 0.05). PPARD and PPARG mRNA expression showed strong positive correlations with PTGS2 mRNA expression (P < 0.0001). Additionally, PPARD gene expression correlated with SLC2A1 and IL1B mRNA expression (P < 0.01). Collectively, these results indicate that among all three PPARs expressed in peri-implantation porcine conceptuses, PPARD and PPARG may be involved in conceptus elongation before implantation.

UI MeSH Term Description Entries
D010064 Embryo Implantation Endometrial implantation of EMBRYO, MAMMALIAN at the BLASTOCYST stage. Blastocyst Implantation,Decidual Cell Reaction,Implantation, Blastocyst,Nidation,Ovum Implantation,Blastocyst Implantations,Decidual Cell Reactions,Embryo Implantations,Implantation, Embryo,Implantation, Ovum,Implantations, Blastocyst,Implantations, Embryo,Implantations, Ovum,Nidations,Ovum Implantations
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D001755 Blastocyst A post-MORULA preimplantation mammalian embryo that develops from a 32-cell stage into a fluid-filled hollow ball of over a hundred cells. A blastocyst has two distinctive tissues. The outer layer of trophoblasts gives rise to extra-embryonic tissues. The inner cell mass gives rise to the embryonic disc and eventual embryo proper. Embryo, Preimplantation,Blastocysts,Embryos, Preimplantation,Preimplantation Embryo,Preimplantation Embryos
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D047492 Peroxisome Proliferator-Activated Receptors TRANSCRIPTION FACTORS that are activated by ligands and heterodimerize with RETINOID X RECEPTORS and bind to peroxisome proliferator response elements in the promoter regions of target genes. Peroxisome Proliferator-Activated Receptor,NUC1 PPAR,PPAR,PPAR, NUC1,Peroxisome Proliferator Activated Receptor,Peroxisome Proliferator Activated Receptors,Proliferator-Activated Receptor, Peroxisome,Proliferator-Activated Receptors, Peroxisome,Receptor, Peroxisome Proliferator-Activated,Receptors, Peroxisome Proliferator-Activated
D047493 PPAR alpha A nuclear transcription factor. Heterodimerization with RETINOID X RECEPTOR GAMMA is important to metabolism of LIPIDS. It is the target of FIBRATES to control HYPERLIPIDEMIAS. PPARalpha,Peroxisome Proliferator-Activated Receptor alpha,Peroxisome Proliferator Activated Receptor alpha
D047494 PPAR delta A nuclear transcription factor. It is activated by PROSTACYCLIN. PPARdelta,PPARD protein,Peroxisome Proliferator-Activated Receptor delta,Peroxisome Proliferator Activated Receptor delta

Related Publications

Agnieszka Blitek, and Magdalena Szymanska
October 2001, Nihon Naika Gakkai zasshi. The Journal of the Japanese Society of Internal Medicine,
Agnieszka Blitek, and Magdalena Szymanska
February 2001, Nihon rinsho. Japanese journal of clinical medicine,
Agnieszka Blitek, and Magdalena Szymanska
February 2001, Nihon rinsho. Japanese journal of clinical medicine,
Agnieszka Blitek, and Magdalena Szymanska
February 2001, Nihon rinsho. Japanese journal of clinical medicine,
Agnieszka Blitek, and Magdalena Szymanska
November 2005, Journal of endocrinological investigation,
Agnieszka Blitek, and Magdalena Szymanska
June 1995, The Journal of steroid biochemistry and molecular biology,
Agnieszka Blitek, and Magdalena Szymanska
November 2001, Medicinal research reviews,
Agnieszka Blitek, and Magdalena Szymanska
January 2001, Advances in protein chemistry,
Agnieszka Blitek, and Magdalena Szymanska
January 2007, Archivum immunologiae et therapiae experimentalis,
Copied contents to your clipboard!