The effect of inhibitors of mitochondrial energy production on hepatic glutathione, UDP-glucuronic acid, and adenosine 3'-phosphate-5'-phosphosulfate concentrations. 1986

R L Dills, and C D Klaassen

The hepatic conjugation of xenobiotics with sulfate, glucuronic acid, and glutathione is decreased in vitro by compounds that impair cellular energy production. The proposed mechanism is that depletion of ATP in metabolically compromised cells causes a decreased synthesis of the co-substrates, adenosine 3'-phosphate 5'-phosphosulfate (PAPS), UDP-glucuronic acid, and glutathione. This proposal was examined in vivo by quantitating hepatic adenine nucleotides and co-substrates in rats treated with the following inhibitors of mitochondrial ATP production: rotenone, antimycin A, carbonyl cyanide m-chlorophenylhydrazone, and 2,4-dinitrophenol. Hepatic ATP levels 30 min after administration of the inhibitors were about 30% of control. Hepatic energy charge (ATP + 0.5 X ADP)/(ATP + ADP + AMP) was significantly reduced by each inhibitor. Unexpectedly, UDP-glucuronic acid, PAPS, and glutathione concentrations were not reduced at 30 or 60 min after administration of the inhibitors. Thus, it does not appear possible to deplete hepatic ATP in vivo by means of mitochondrial inhibitors to the extent necessary to affect basal levels of UDP-glucuronic acid, PAPS, and glutathione. PAPS levels increased after administration of 2,4-dinitrophenol. This was shown to be a property shared with phenolic inhibitors of phenol sulfotransferase.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone
D004140 Dinitrophenols Organic compounds that contain two nitro groups attached to a phenol.
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D005978 Glutathione A tripeptide with many roles in cells. It conjugates to drugs to make them more soluble for excretion, is a cofactor for some enzymes, is involved in protein disulfide bond rearrangement and reduces peroxides. Reduced Glutathione,gamma-L-Glu-L-Cys-Gly,gamma-L-Glutamyl-L-Cysteinylglycine,Glutathione, Reduced,gamma L Glu L Cys Gly,gamma L Glutamyl L Cysteinylglycine
D000249 Adenosine Monophosphate Adenine nucleotide containing one phosphate group esterified to the sugar moiety in the 2'-, 3'-, or 5'-position. AMP,Adenylic Acid,2'-AMP,2'-Adenosine Monophosphate,2'-Adenylic Acid,5'-Adenylic Acid,Adenosine 2'-Phosphate,Adenosine 3'-Phosphate,Adenosine 5'-Phosphate,Adenosine Phosphate Dipotassium,Adenosine Phosphate Disodium,Phosphaden,2' Adenosine Monophosphate,2' Adenylic Acid,5' Adenylic Acid,5'-Phosphate, Adenosine,Acid, 2'-Adenylic,Acid, 5'-Adenylic,Adenosine 2' Phosphate,Adenosine 3' Phosphate,Adenosine 5' Phosphate,Dipotassium, Adenosine Phosphate,Disodium, Adenosine Phosphate,Monophosphate, 2'-Adenosine,Phosphate Dipotassium, Adenosine,Phosphate Disodium, Adenosine

Related Publications

R L Dills, and C D Klaassen
January 1987, Drug metabolism and disposition: the biological fate of chemicals,
R L Dills, and C D Klaassen
January 1985, Drug metabolism and disposition: the biological fate of chemicals,
R L Dills, and C D Klaassen
September 1988, Biochemical and biophysical research communications,
R L Dills, and C D Klaassen
March 1989, Proceedings of the National Academy of Sciences of the United States of America,
R L Dills, and C D Klaassen
August 1990, Biochemical pharmacology,
Copied contents to your clipboard!