[3H]dynorphin A binding and kappa selectivity of prodynorphin peptides in rat, guinea-pig and monkey brain. 1986

E A Young, and J M Walker, and M E Lewis, and R A Houghten, and J H Woods, and H Akil

We have previously demonstrated that [3H]dynorphin A selectively labels kappa opioid receptors in guinea-pig whole brain. In these current studies, using protection from inactivation by beta-chloronaltrexamine (beta-CNA), we are able to demonstrate that although dynorphin A prefers kappa receptors, it will label mu receptors when kappa receptors are not available, or present in only a small number. Thus, differences in numbers of mu and kappa receptors present in brain preparations are critical in determining the receptor binding profile of [3H]dynorphin A across species. Additionally, although all the prodynorphin derived peptides show kappa preference, the ability of the other prodynorphin derived peptides to compete with [3H]dynorphin A for its receptor varies across species. Consequently, in a highly enriched kappa preparation such as monkey cerebral cortex, [3H]dynorphin A appears to label kappa receptors with substantial selectivity, and the other prodynorphin-derived peptides show less ability to compete with dynorphin A for its receptor. In contrast, in a kappa-poor tissue such as rat brain, all of the prodynorphin-derived peptides, including dynorphin A-(1-8), show very similar potency. Thus, differences in mu and kappa receptor numbers across brain regions and species lead to differences in the receptor binding profile of dynorphin A.

UI MeSH Term Description Entries
D008253 Macaca mulatta A species of the genus MACACA inhabiting India, China, and other parts of Asia. The species is used extensively in biomedical research and adapts very well to living with humans. Chinese Rhesus Macaques,Macaca mulatta lasiota,Monkey, Rhesus,Rhesus Monkey,Rhesus Macaque,Chinese Rhesus Macaque,Macaca mulatta lasiotas,Macaque, Rhesus,Rhesus Macaque, Chinese,Rhesus Macaques,Rhesus Macaques, Chinese,Rhesus Monkeys
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009271 Naltrexone Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of NALOXONE. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. Antaxone,Celupan,EN-1639A,Nalorex,Naltrexone Hydrochloride,Nemexin,ReVia,Trexan,EN 1639A,EN1639A
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D001923 Brain Chemistry Changes in the amounts of various chemicals (neurotransmitters, receptors, enzymes, and other metabolites) specific to the area of the central nervous system contained within the head. These are monitored over time, during sensory stimulation, or under different disease states. Chemistry, Brain,Brain Chemistries,Chemistries, Brain
D004399 Dynorphins A class of opioid peptides including dynorphin A, dynorphin B, and smaller fragments of these peptides. Dynorphins prefer kappa-opioid receptors (RECEPTORS, OPIOID, KAPPA) and have been shown to play a role as central nervous system transmitters. Dynorphin,Dynorphin (1-17),Dynorphin A,Dynorphin A (1-17)
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000477 Alkylating Agents Highly reactive chemicals that introduce alkyl radicals into biologically active molecules and thereby prevent their proper functioning. Many are used as antineoplastic agents, but most are very toxic, with carcinogenic, mutagenic, teratogenic, and immunosuppressant actions. They have also been used as components in poison gases. Alkylating Agent,Alkylator,Alkylators,Agent, Alkylating,Agents, Alkylating
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

E A Young, and J M Walker, and M E Lewis, and R A Houghten, and J H Woods, and H Akil
October 1985, Journal of neurochemistry,
E A Young, and J M Walker, and M E Lewis, and R A Houghten, and J H Woods, and H Akil
April 1984, European journal of pharmacology,
E A Young, and J M Walker, and M E Lewis, and R A Houghten, and J H Woods, and H Akil
January 1983, Life sciences,
E A Young, and J M Walker, and M E Lewis, and R A Houghten, and J H Woods, and H Akil
July 1989, Journal of neurochemistry,
E A Young, and J M Walker, and M E Lewis, and R A Houghten, and J H Woods, and H Akil
February 1984, European journal of pharmacology,
E A Young, and J M Walker, and M E Lewis, and R A Houghten, and J H Woods, and H Akil
November 1988, Canadian journal of physiology and pharmacology,
E A Young, and J M Walker, and M E Lewis, and R A Houghten, and J H Woods, and H Akil
April 1988, European journal of pharmacology,
E A Young, and J M Walker, and M E Lewis, and R A Houghten, and J H Woods, and H Akil
February 1985, European journal of pharmacology,
E A Young, and J M Walker, and M E Lewis, and R A Houghten, and J H Woods, and H Akil
January 1984, European journal of pharmacology,
Copied contents to your clipboard!