The Evolution and Ecology of Resistance in Cancer Therapy. 2018

Robert Gatenby, and Joel Brown
Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, Florida 33612.

Despite continuous deployment of new treatment strategies and agents over many decades, most disseminated cancers remain fatal. Cancer cells, through their access to the vast information of human genome, have a remarkable capacity to deploy adaptive strategies for even the most effective treatments. We note there are two critical steps in the clinical manifestation of treatment resistance. The first, which is widely investigated, requires deployment of a mechanism of resistance that usually involves increased expression of molecular machinery necessary to eliminate the cytotoxic effect of treatment. However, the emergence of a resistant phenotype is not in itself clinically significant. That is, resistant cells affect patient outcomes only when they form a sufficiently large population to allow tumor progression and treatment failure. Importantly, proliferation of the resistant phenotype is by no means certain and, in fact, depends on complex Darwinian dynamics governed by the costs and benefits of the resistance mechanisms in the context of the local environment and competing populations. Attempts to target molecular machinery of resistance have had little clinical success largely because of the diversity within the human genome-therapeutic interruption of one mechanism simply results in its replacement by an alternative. We explore an alternative strategy for overcoming treatment resistance that seeks to understand and exploit the critical evolutionary dynamics that govern proliferation of the resistant phenotypes. In general, this approach has shown that, although emergence of resistance mechanisms in cancer cells to every current therapy is inevitable, proliferation of the resistant phenotypes is not and can be delayed and even prevented with sufficient understanding of the underlying ecoevolutionary dynamics.

UI MeSH Term Description Entries
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D015894 Genome, Human The complete genetic complement contained in the DNA of a set of CHROMOSOMES in a HUMAN. The length of the human genome is about 3 billion base pairs. Human Genome,Genomes, Human,Human Genomes
D057285 Precision Medicine Clinical, therapeutic and diagnostic approaches to optimal disease management based on individual variations in a patient's genetic profile. Individualized Medicine,Predictive Medicine,P Health,P-Health,Personalized Medicine,Theranostics,Medicine, Individualized,Medicine, Personalized,Medicine, Precision,Medicine, Predictive,Theranostic
D019008 Drug Resistance, Neoplasm Resistance or diminished response of a neoplasm to an antineoplastic agent in humans, animals, or cell or tissue cultures. Antibiotic Resistance, Neoplasm,Antineoplastic Drug Resistance,Drug Resistance, Antineoplastic,Antineoplastic Agent Resistance,Neoplasm Drug Resistance,Resistance, Antineoplastic Agent,Resistance, Antineoplastic Drug

Related Publications

Robert Gatenby, and Joel Brown
September 2016, Nature,
Robert Gatenby, and Joel Brown
September 1992, Trends in ecology & evolution,
Robert Gatenby, and Joel Brown
December 2009, Environmental microbiology reports,
Robert Gatenby, and Joel Brown
June 2007, FEMS microbiology letters,
Robert Gatenby, and Joel Brown
April 2021, The ISME journal,
Robert Gatenby, and Joel Brown
January 2006, Current pharmaceutical design,
Robert Gatenby, and Joel Brown
November 1990, Trends in ecology & evolution,
Robert Gatenby, and Joel Brown
October 2013, Radiology,
Robert Gatenby, and Joel Brown
May 2014, Nature reviews. Cancer,
Robert Gatenby, and Joel Brown
August 2016, Aging,
Copied contents to your clipboard!