Design, synthesis and biological evaluation of novel 6-substituted pyrrolo [3,2-d] pyrimidine analogues as antifolate antitumor agents. 2017

Chao Tian, and Meng Wang, and Zifei Han, and Fang Fang, and Zhili Zhang, and Xiaowei Wang, and Junyi Liu
Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

A series of novel 6-substituted pyrrolo[3,2-d]pyrimidine analogues (10a, 11a-13a, 15a, 17a, 18a, 27a and 28a) have been designed and synthesized as antifolate antitumor agents. The anti-proliferative activities of these compounds against HL60, A549, H1299, Hela, HCT116 and HT29 tumor cells were evaluated. Most of the compounds exhibited micromolar anti-proliferative potencies. Compound 15a, the most potent one, has GI50 value of 0.73, 1.72, and 8.92 μM against A549, H1299 and HL60 cells, respectively. The cell cycle distribution assay displayed that 15a could increase the accumulation of G2/M-phase cells. 15a showed low potency in induction of apoptosis. However, the inhibition of A549 cell colony formation was observed. These indicated that the tumor cell death relied on the irreversible effect of 15a on clonogenicity and cell proliferation. The identification of targeted pathway of 15a implied that the anti-proliferative potencies of 15a probably act through dual inhibition of thymidylate synthase (TS) and dihydrofolate reductase (DHFR).

UI MeSH Term Description Entries
D011743 Pyrimidines A family of 6-membered heterocyclic compounds occurring in nature in a wide variety of forms. They include several nucleic acid constituents (CYTOSINE; THYMINE; and URACIL) and form the basic structure of the barbiturates.
D011758 Pyrroles Azoles of one NITROGEN and two double bonds that have aromatic chemical properties. Pyrrole
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005492 Folic Acid A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Pteroylglutamic Acid,Vitamin M,Folacin,Folate,Folic Acid, (D)-Isomer,Folic Acid, (DL)-Isomer,Folic Acid, Calcium Salt (1:1),Folic Acid, Monopotassium Salt,Folic Acid, Monosodium Salt,Folic Acid, Potassium Salt,Folic Acid, Sodium Salt,Folvite,Vitamin B9,B9, Vitamin
D005493 Folic Acid Antagonists Inhibitors of the enzyme, dihydrofolate reductase (TETRAHYDROFOLATE DEHYDROGENASE), which converts dihydrofolate (FH2) to tetrahydrofolate (FH4). They are frequently used in cancer chemotherapy. (From AMA, Drug Evaluations Annual, 1994, p2033) Antifolate,Antifolates,Dihydrofolate Reductase Inhibitor,Folic Acid Antagonist,Dihydrofolate Reductase Inhibitors,Folic Acid Metabolism Inhibitors,Acid Antagonist, Folic,Acid Antagonists, Folic,Antagonist, Folic Acid,Antagonists, Folic Acid,Inhibitor, Dihydrofolate Reductase,Inhibitors, Dihydrofolate Reductase,Reductase Inhibitor, Dihydrofolate,Reductase Inhibitors, Dihydrofolate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

Chao Tian, and Meng Wang, and Zifei Han, and Fang Fang, and Zhili Zhang, and Xiaowei Wang, and Junyi Liu
November 2012, Pharmaceutical research,
Chao Tian, and Meng Wang, and Zifei Han, and Fang Fang, and Zhili Zhang, and Xiaowei Wang, and Junyi Liu
September 2019, Bioorganic chemistry,
Chao Tian, and Meng Wang, and Zifei Han, and Fang Fang, and Zhili Zhang, and Xiaowei Wang, and Junyi Liu
June 2020, Bioorganic chemistry,
Chao Tian, and Meng Wang, and Zifei Han, and Fang Fang, and Zhili Zhang, and Xiaowei Wang, and Junyi Liu
April 2024, Organic & biomolecular chemistry,
Chao Tian, and Meng Wang, and Zifei Han, and Fang Fang, and Zhili Zhang, and Xiaowei Wang, and Junyi Liu
February 2021, Bioorganic & medicinal chemistry letters,
Chao Tian, and Meng Wang, and Zifei Han, and Fang Fang, and Zhili Zhang, and Xiaowei Wang, and Junyi Liu
November 2014, European journal of medicinal chemistry,
Chao Tian, and Meng Wang, and Zifei Han, and Fang Fang, and Zhili Zhang, and Xiaowei Wang, and Junyi Liu
October 2014, European journal of medicinal chemistry,
Chao Tian, and Meng Wang, and Zifei Han, and Fang Fang, and Zhili Zhang, and Xiaowei Wang, and Junyi Liu
September 2019, European journal of medicinal chemistry,
Chao Tian, and Meng Wang, and Zifei Han, and Fang Fang, and Zhili Zhang, and Xiaowei Wang, and Junyi Liu
February 2019, Journal of medicinal chemistry,
Chao Tian, and Meng Wang, and Zifei Han, and Fang Fang, and Zhili Zhang, and Xiaowei Wang, and Junyi Liu
June 2016, European journal of medicinal chemistry,
Copied contents to your clipboard!