The metabolism of 14C-cibenzoline in dogs and rats. 1986

A C Loh, and T H Williams, and J W Tilley, and G J Sasso, and A J Szuna, and J J Carbone, and V Toome, and F J Leinweber

The disposition of the new antiarrhythmic agent cibenzoline (CBZ) (racemic 4,5-dihydro-2-(2,2-diphenylcyclopropyl)-1H-imidazole) in three male dogs was investigated after oral administration of 13.8 mg/kg of 14C-CBZ base. Within 6 days, 60.5 +/- 6.0% of the dose was excreted in urine and 19.2 +/- 4.6% in feces. In 0-24-hr urine, unchanged drug was excreted (41.6% of the dose) as well as the unconjugated 4,5-dehydro metabolite (DHCBZ, 3.7%), conjugated p-hydroxybenzophenone (0.8%, only in one dog), and a phenolic metabolite, p-hydroxycibenzoline (HCBZ) in a rearranged form (RHCBZ) at 5.2% of the dose (free plus conjugated). Studies with synthetic HCBZ indicated that unrearranged HCBZ was excreted and that rearrangement occurred during purification. CBZ from dog urine displayed slight optical activity, based on ORD/CD data, corresponding to an optical purity of 15% of the S-(-)-CBZ, indicating a limited extent of stereoselective metabolism of CBZ in dogs. After an oral 50-mg/kg dose of 14C-CBZ succinate, male rats excreted in 3 days 27.0 +/- 2.8% in urine and 41.5 +/- 2.6% of the dose in feces, and in a repeated experiment 32.1 +/- 1.9% in urine and 54.5 +/- 0.7% in feces. CBZ (7.6%) and DHCBZ (0.2%) were determined in 0-24-hr urine, and CBZ (4.2%) and RHCBZ (4.2% of the dose) were determined in 0-24-hr feces. RHCBZ (3.1%), m-methoxy p-hydroxycibenzoline (8.3%), and p-hydroxybenzophenone (5.3% of the dose) were identified as glucuronide/sulfate conjugates in bile from rats. Evidence that p-hydroxybenzophenone arose from an unstable unidentified metabolite is discussed.

UI MeSH Term Description Entries
D007093 Imidazoles Compounds containing 1,3-diazole, a five membered aromatic ring containing two nitrogen atoms separated by one of the carbons. Chemically reduced ones include IMIDAZOLINES and IMIDAZOLIDINES. Distinguish from 1,2-diazole (PYRAZOLES).
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005243 Feces Excrement from the INTESTINES, containing unabsorbed solids, waste products, secretions, and BACTERIA of the DIGESTIVE SYSTEM.
D000284 Administration, Oral The giving of drugs, chemicals, or other substances by mouth. Drug Administration, Oral,Administration, Oral Drug,Oral Administration,Oral Drug Administration,Administrations, Oral,Administrations, Oral Drug,Drug Administrations, Oral,Oral Administrations,Oral Drug Administrations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000889 Anti-Arrhythmia Agents Agents used for the treatment or prevention of cardiac arrhythmias. They may affect the polarization-repolarization phase of the action potential, its excitability or refractoriness, or impulse conduction or membrane responsiveness within cardiac fibers. Anti-arrhythmia agents are often classed into four main groups according to their mechanism of action: sodium channel blockade, beta-adrenergic blockade, repolarization prolongation, or calcium channel blockade. Anti-Arrhythmia Agent,Anti-Arrhythmia Drug,Anti-Arrhythmic,Antiarrhythmia Agent,Antiarrhythmia Drug,Antiarrhythmic Drug,Antifibrillatory Agent,Antifibrillatory Agents,Cardiac Depressant,Cardiac Depressants,Myocardial Depressant,Myocardial Depressants,Anti-Arrhythmia Drugs,Anti-Arrhythmics,Antiarrhythmia Agents,Antiarrhythmia Drugs,Antiarrhythmic Drugs,Agent, Anti-Arrhythmia,Agent, Antiarrhythmia,Agent, Antifibrillatory,Agents, Anti-Arrhythmia,Agents, Antiarrhythmia,Agents, Antifibrillatory,Anti Arrhythmia Agent,Anti Arrhythmia Agents,Anti Arrhythmia Drug,Anti Arrhythmia Drugs,Anti Arrhythmic,Anti Arrhythmics,Depressant, Cardiac,Depressant, Myocardial,Depressants, Cardiac,Depressants, Myocardial,Drug, Anti-Arrhythmia,Drug, Antiarrhythmia,Drug, Antiarrhythmic,Drugs, Anti-Arrhythmia,Drugs, Antiarrhythmia,Drugs, Antiarrhythmic

Related Publications

A C Loh, and T H Williams, and J W Tilley, and G J Sasso, and A J Szuna, and J J Carbone, and V Toome, and F J Leinweber
June 1966, The Journal of biological chemistry,
A C Loh, and T H Williams, and J W Tilley, and G J Sasso, and A J Szuna, and J J Carbone, and V Toome, and F J Leinweber
March 2017, Regulatory toxicology and pharmacology : RTP,
A C Loh, and T H Williams, and J W Tilley, and G J Sasso, and A J Szuna, and J J Carbone, and V Toome, and F J Leinweber
January 2018, Journal of toxicology and environmental health. Part A,
A C Loh, and T H Williams, and J W Tilley, and G J Sasso, and A J Szuna, and J J Carbone, and V Toome, and F J Leinweber
June 2006, Drug metabolism and disposition: the biological fate of chemicals,
A C Loh, and T H Williams, and J W Tilley, and G J Sasso, and A J Szuna, and J J Carbone, and V Toome, and F J Leinweber
August 2009, Drug metabolism and disposition: the biological fate of chemicals,
A C Loh, and T H Williams, and J W Tilley, and G J Sasso, and A J Szuna, and J J Carbone, and V Toome, and F J Leinweber
May 1986, Antimicrobial agents and chemotherapy,
A C Loh, and T H Williams, and J W Tilley, and G J Sasso, and A J Szuna, and J J Carbone, and V Toome, and F J Leinweber
January 1986, Xenobiotica; the fate of foreign compounds in biological systems,
A C Loh, and T H Williams, and J W Tilley, and G J Sasso, and A J Szuna, and J J Carbone, and V Toome, and F J Leinweber
May 2023, Xenobiotica; the fate of foreign compounds in biological systems,
A C Loh, and T H Williams, and J W Tilley, and G J Sasso, and A J Szuna, and J J Carbone, and V Toome, and F J Leinweber
January 1988, Pharmacology,
A C Loh, and T H Williams, and J W Tilley, and G J Sasso, and A J Szuna, and J J Carbone, and V Toome, and F J Leinweber
May 1987, Xenobiotica; the fate of foreign compounds in biological systems,
Copied contents to your clipboard!