Comparison of the release of microRNAs and extracellular vesicles from platelets in response to different agonists. 2018

Ashley R Ambrose, and Mohammed A Alsahli, and Sameer A Kurmani, and Alison H Goodall
a Department of Cardiovascular Sciences , University of Leicester and NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital , Leicester , UK.

On activation platelets release microRNAs and extracellular vesicles (EV) into circulation. The release of EV from platelets has been shown to be dependent on the agonist; in this study, we investigated whether the microRNA profile or EV released from platelets was also agonist specific. Washed platelets from healthy subjects were maximally stimulated with agonists specific for the receptors for collagen (Glycoprotein VI (GPVI)), thrombin (PAR1/PAR4), or ADP (P2Y1/P2Y12) with/without inhibiting secondary mediators, using aspirin to block cyclooxygenase-1 and apyrase to remove ADP. The released microRNAs were profiled using TaqMan microRNA microarray cards. Platelet-derived EV (pdEV) were characterized by size (Nanoparticle Tracking Analysis, NTA), for procoagulant activity (Annexin-V binding and support of thrombin generation), and for the EV markers CD63 and HSP70. Platelet activation triggered the release of 57-79 different microRNAs, dependent upon agonist, with a core of 46 microRNAs observed with all agonists. There was a high level of correlation between agonists (r2 > 0.98; p < 0.0001 for all), and with the microRNA content of the parent platelets (r2 > 0.98; p < 0.0001). The 46 microRNAs seen in all samples are predicted to have significant effects on the translation of proteins involved in endocytosis, cell cycle control, and differentiation. MiR-223-3p was the most abundant in all samples and has previously been implicated in myeloid lineage development and demonstrated to have anti-inflammatory effects. Stimulation through GPVI produced a pdEV population with significantly more procoagulant activity than the other agonists. Apyrase significantly reduced microRNA and pdEV release, while aspirin had little effect. These data suggest that all tested agonists trigger the release of a similar microRNA profile while the procoagulant activity of the pdEV was agonist dependent. ADP was shown to play an important role in the release of both microRNAs and pdEV.

UI MeSH Term Description Entries
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000067128 Extracellular Vesicles Membrane limited structures derived from cell membranes and cytoplasmic material, and released into EXTRACELLULAR SPACE. They circulate through the EXTRACELLULAR FLUID and through the peripheral blood in the MICROVASCULATURE where cells, much larger, cannot, thereby affecting a variety of intercellular communication processes. Apoptotic Bodies,Exovesicles,Apoptotic Body,Bodies, Apoptotic,Body, Apoptotic,Exovesicle,Extracellular Vesicle,Vesicle, Extracellular,Vesicles, Extracellular
D015539 Platelet Activation A series of progressive, overlapping events, triggered by exposure of the PLATELETS to subendothelial tissue. These events include shape change, adhesiveness, aggregation, and release reactions. When carried through to completion, these events lead to the formation of a stable hemostatic plug. Activation, Platelet,Activations, Platelet,Platelet Activations
D035683 MicroRNAs Small double-stranded, non-protein coding RNAs, 21-25 nucleotides in length generated from single-stranded microRNA gene transcripts by the same RIBONUCLEASE III, Dicer, that produces small interfering RNAs (RNA, SMALL INTERFERING). They become part of the RNA-INDUCED SILENCING COMPLEX and repress the translation (TRANSLATION, GENETIC) of target RNA by binding to homologous 3'UTR region as an imperfect match. The small temporal RNAs (stRNAs), let-7 and lin-4, from C. elegans, are the first 2 miRNAs discovered, and are from a class of miRNAs involved in developmental timing. RNA, Small Temporal,Small Temporal RNA,miRNA,stRNA,Micro RNA,MicroRNA,Primary MicroRNA,Primary miRNA,miRNAs,pre-miRNA,pri-miRNA,MicroRNA, Primary,RNA, Micro,Temporal RNA, Small,miRNA, Primary,pre miRNA,pri miRNA
D064368 Healthy Volunteers Persons with no known significant health problems who are recruited to participate in research to test a new drug, device, or intervention as controls for a patient group. (from http://clinicalcenter.nih.gov/recruit/volunteers.html, accessed 2/14/2013) Healthy Participants,Healthy Subjects,Human Volunteers,Normal Volunteers,Healthy Participant,Healthy Subject,Healthy Volunteer,Human Volunteer,Normal Volunteer,Participant, Healthy,Participants, Healthy,Subject, Healthy,Subjects, Healthy,Volunteer, Healthy,Volunteer, Human,Volunteer, Normal,Volunteers, Human,Volunteers, Normal

Related Publications

Ashley R Ambrose, and Mohammed A Alsahli, and Sameer A Kurmani, and Alison H Goodall
January 2019, Cardiology journal,
Ashley R Ambrose, and Mohammed A Alsahli, and Sameer A Kurmani, and Alison H Goodall
January 2020, Frontiers in physiology,
Ashley R Ambrose, and Mohammed A Alsahli, and Sameer A Kurmani, and Alison H Goodall
January 2020, Cell death discovery,
Ashley R Ambrose, and Mohammed A Alsahli, and Sameer A Kurmani, and Alison H Goodall
September 2021, Scientific reports,
Ashley R Ambrose, and Mohammed A Alsahli, and Sameer A Kurmani, and Alison H Goodall
July 2018, Scientific reports,
Ashley R Ambrose, and Mohammed A Alsahli, and Sameer A Kurmani, and Alison H Goodall
September 2017, International journal for parasitology,
Ashley R Ambrose, and Mohammed A Alsahli, and Sameer A Kurmani, and Alison H Goodall
April 2018, Biochimica et biophysica acta. Molecular basis of disease,
Ashley R Ambrose, and Mohammed A Alsahli, and Sameer A Kurmani, and Alison H Goodall
December 2022, Acta physiologica (Oxford, England),
Ashley R Ambrose, and Mohammed A Alsahli, and Sameer A Kurmani, and Alison H Goodall
August 2023, Cancers,
Ashley R Ambrose, and Mohammed A Alsahli, and Sameer A Kurmani, and Alison H Goodall
September 2020, Cellular microbiology,
Copied contents to your clipboard!