IMP dehydrogenase from the intracellular parasitic protozoan Eimeria tenella and its inhibition by mycophenolic acid. 1986

D J Hupe, and B A Azzolina, and N D Behrens

Mycophenolic acid (MA) was demonstrated to be an effective inhibitor of the growth of the intracellular parasitic protozoan Eimeria tenella in tissue culture and guanine was shown to reverse this inhibition as expected for an inhibitor of IMP dehydrogenase (IMP:NAD+ oxidoreductase, EC 1.1.1.205). A high performance liquid chromatography study of the intracellular nucleotide pools labeled with [3H]hypoxanthine was carried out in host cells lacking hypoxanthine-guanine phosphoribosyltransferase, and the depletion of guanine nucleotides demonstrated that the intracellular parasite enzyme was being inhibited by the drug. Kinetic studies carried out on the enzyme derived from E. tenella oocysts demonstrated substrate inhibition by NAD and mycophenolic acid inhibition similar to that found for mammalian enzymes, but different from that for bacterial enzymes. The inhibition by mycophenolic acid was not time-dependent and was immediately reversed upon dilution. As found previously for other IMP dehydrogenases, an Ordered Bi-Bi mechanism prevails with IMP on first followed by NAD, NADH off first, and then XMP. The kinetic patterns are consistent with substrate inhibition at high concentrations of NAD due to the formation of an E X XMP X NAD complex. Uncompetitive inhibition by MA versus IMP, NAD, and K+ was found and this was interpreted as evidence for the formation of an E X XMP X MA complex. A speculative mechanism for the inhibition of the enzyme is offered which is consistent with the fact that E X XMP X MA readily forms, whereas E X IMP X MA does not.

UI MeSH Term Description Entries
D007041 Hypoxanthine Phosphoribosyltransferase An enzyme that catalyzes the conversion of 5-phosphoribosyl-1-pyrophosphate and hypoxanthine, guanine, or MERCAPTOPURINE to the corresponding 5'-mononucleotides and pyrophosphate. The enzyme is important in purine biosynthesis as well as central nervous system functions. Complete lack of enzyme activity is associated with the LESCH-NYHAN SYNDROME, while partial deficiency results in overproduction of uric acid. EC 2.4.2.8. Guanine Phosphoribosyltransferase,HPRT,Hypoxanthine-Guanine Phosphoribosyltransferase,IMP Pyrophosphorylase,HGPRT,HPRTase,Hypoxanthine Guanine Phosphoribosyltransferase,Phosphoribosyltransferase, Guanine,Phosphoribosyltransferase, Hypoxanthine,Phosphoribosyltransferase, Hypoxanthine-Guanine,Pyrophosphorylase, IMP
D007168 IMP Dehydrogenase An enzyme that catalyzes the dehydrogenation of inosine 5'-phosphate to xanthosine 5'-phosphate in the presence of NAD. EC 1.1.1.205. Inosinic Acid Dehydrogenase,Inosine-5-Monophosphate Dehydrogenase,Acid Dehydrogenase, Inosinic,Dehydrogenase, IMP,Dehydrogenase, Inosine-5-Monophosphate,Dehydrogenase, Inosinic Acid,Inosine 5 Monophosphate Dehydrogenase
D007658 Ketone Oxidoreductases Oxidoreductases that are specific for KETONES. Oxidoreductases, Ketone
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008223 Lymphoma A general term for various neoplastic diseases of the lymphoid tissue. Germinoblastoma,Lymphoma, Malignant,Reticulolymphosarcoma,Sarcoma, Germinoblastic,Germinoblastic Sarcoma,Germinoblastic Sarcomas,Germinoblastomas,Lymphomas,Lymphomas, Malignant,Malignant Lymphoma,Malignant Lymphomas,Reticulolymphosarcomas,Sarcomas, Germinoblastic
D008956 Models, Chemical Theoretical representations that simulate the behavior or activity of chemical processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Chemical Models,Chemical Model,Model, Chemical
D009173 Mycophenolic Acid Compound derived from Penicillium stoloniferum and related species. It blocks de novo biosynthesis of purine nucleotides by inhibition of the enzyme inosine monophosphate dehydrogenase (IMP DEHYDROGENASE). Mycophenolic acid exerts selective effects on the immune system in which it prevents the proliferation of T-CELLS, LYMPHOCYTES, and the formation of antibodies from B-CELLS. It may also inhibit recruitment of LEUKOCYTES to sites of INFLAMMATION. Cellcept,Mycophenolate Mofetil,Mycophenolate Mofetil Hydrochloride,Mycophenolate Sodium,Mycophenolic Acid Morpholinoethyl Ester,Myfortic,RS 61443,RS-61443,Sodium Mycophenolate,Mofetil Hydrochloride, Mycophenolate,Mofetil, Mycophenolate,Mycophenolate, Sodium,RS61443
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes

Related Publications

D J Hupe, and B A Azzolina, and N D Behrens
March 1994, Annals of clinical biochemistry,
D J Hupe, and B A Azzolina, and N D Behrens
June 2005, Antimicrobial agents and chemotherapy,
D J Hupe, and B A Azzolina, and N D Behrens
November 1981, Proceedings of the National Academy of Sciences of the United States of America,
D J Hupe, and B A Azzolina, and N D Behrens
February 1995, Clinical chemistry,
D J Hupe, and B A Azzolina, and N D Behrens
March 2005, The Journal of biological chemistry,
D J Hupe, and B A Azzolina, and N D Behrens
January 1994, Advances in experimental medicine and biology,
D J Hupe, and B A Azzolina, and N D Behrens
September 2010, Acta crystallographica. Section F, Structural biology and crystallization communications,
D J Hupe, and B A Azzolina, and N D Behrens
December 1985, Molecular pharmacology,
D J Hupe, and B A Azzolina, and N D Behrens
October 1989, The Journal of biological chemistry,
Copied contents to your clipboard!