Co-localization of fixative-modified glutamate and glutaminase in neurons of the spinal trigeminal nucleus of the rat: an immunohistochemical and immunoradiochemical analysis. 1986

K R Magnusson, and A A Larson, and J E Madl, and R A Altschuler, and A J Beitz

The spinal trigeminal nucleus (STN) is involved in processing orofacial sensory information, including tactile, thermal and nociceptive input, and relaying this information to higher brain centers, such as the thalamus. Very little information is available regarding the major excitatory neurotransmitters of this nucleus. The amino acid glutamate has been proposed as a major excitatory neurotransmitter in the central nervous system. In the present study, a novel monoclonal antibody, specific for fixative-modified glutamate, was utilized in conjunction with polyclonal antisera against glutaminase and aspartate aminotransferase (AATase) in an attempt to identify and map the locations of possible glutamatergic neurons in the STN. Co-localization experiments were performed by radiolabeling our monoclonal antibody and using this antibody in conjunction with the polyclonal antisera against glutaminase and AATase to evaluate the possible coexistence of glutamate with glutaminase or AATase in STN neurons. In all three subnuclei of the STN, immunohistochemically labeled neuronal profiles were observed with both of the polyclonal antisera and with the monoclonal antibody. Subnucleus caudalis contained the greatest number of labeled profiles per coronal section followed by subnucleus interpolaris and subnucleus oralis. The number and the distribution of immunoreactive profiles observed after the use of the glutaminase antiserum was comparable to that obtained with the monoclonal antibody. Co-localization experiments demonstrated that all glutaminase-like immunoreactive neurons also contained fixative-modified glutamate-like immunoradioactivity. These results suggest that glutamatergic neurons are present in the spinal trigeminal nucleus. The AATase antiserum labeled more neuronal profiles in each of the three subnuclei than did the glutaminase antiserum or the monoclonal antibody. In addition, co-localization experiments indicated that glutamate-like immunoreactivity was present in only two-thirds of AATase-like immunoreactive neuronal profiles. These findings suggest that glutaminase may be a more reliable marker of glutamatergic function than AATase.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D005972 Glutaminase Phosphate-Activated Glutaminase,Glutaminase, Phosphate-Activated,Phosphate Activated Glutaminase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D001219 Aspartate Aminotransferases Enzymes of the transferase class that catalyze the conversion of L-aspartate and 2-ketoglutarate to oxaloacetate and L-glutamate. EC 2.6.1.1. Aspartate Aminotransferase,Aspartate Transaminase,Glutamic-Oxaloacetic Transaminase,SGOT,Aspartate Apoaminotransferase,Glutamate-Aspartate Transaminase,L-Aspartate-2-Oxoglutarate Aminotransferase,Serum Glutamic-Oxaloacetic Transaminase,Aminotransferase, Aspartate,Aminotransferase, L-Aspartate-2-Oxoglutarate,Aminotransferases, Aspartate,Apoaminotransferase, Aspartate,Glutamate Aspartate Transaminase,Glutamic Oxaloacetic Transaminase,Glutamic-Oxaloacetic Transaminase, Serum,L Aspartate 2 Oxoglutarate Aminotransferase,Serum Glutamic Oxaloacetic Transaminase,Transaminase, Aspartate,Transaminase, Glutamate-Aspartate,Transaminase, Glutamic-Oxaloacetic,Transaminase, Serum Glutamic-Oxaloacetic
D014275 Trigeminal Caudal Nucleus The caudal portion of the nucleus of the spinal trigeminal tract (TRIGEMINAL NUCLEUS, SPINAL), a nucleus involved with pain and temperature sensation. Caudal Nucleus, Trigeminal,Nucleus, Trigeminal Caudal

Related Publications

K R Magnusson, and A A Larson, and J E Madl, and R A Altschuler, and A J Beitz
January 1994, Brain research,
K R Magnusson, and A A Larson, and J E Madl, and R A Altschuler, and A J Beitz
August 1988, The Journal of comparative neurology,
K R Magnusson, and A A Larson, and J E Madl, and R A Altschuler, and A J Beitz
March 1986, Neuroscience,
K R Magnusson, and A A Larson, and J E Madl, and R A Altschuler, and A J Beitz
November 2011, European journal of pain (London, England),
K R Magnusson, and A A Larson, and J E Madl, and R A Altschuler, and A J Beitz
March 2001, Brain research,
K R Magnusson, and A A Larson, and J E Madl, and R A Altschuler, and A J Beitz
February 2017, Bosnian journal of basic medical sciences,
K R Magnusson, and A A Larson, and J E Madl, and R A Altschuler, and A J Beitz
January 1990, Neuroscience,
K R Magnusson, and A A Larson, and J E Madl, and R A Altschuler, and A J Beitz
December 2003, The Journal of comparative neurology,
K R Magnusson, and A A Larson, and J E Madl, and R A Altschuler, and A J Beitz
June 1997, Experimental brain research,
K R Magnusson, and A A Larson, and J E Madl, and R A Altschuler, and A J Beitz
November 2001, Neuroscience letters,
Copied contents to your clipboard!