Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. 2017

J Dobias, and V Dénervaud-Tendon, and L Poirel, and P Nordmann
Emerging Antibiotic Resistance Unit, University of Fribourg, Fribourg, Switzerland.

The novel siderophore cephalosporin cefiderocol (S-649266) with potent activity against Gram-negative pathogens was recently developed (Shionogi & Co., Ltd.). Here, we evaluated the activity of this new molecule and comparators against a collection of previously characterized Gram-negative isolates using broth microdilution panels. A total of 753 clinical multidrug-resistant Gram-negative isolates collected from hospitals worldwide were tested against cefiderocol and antibiotic comparators (ceftolozane-tazobactam [CT], meropenem [MEM], ceftazidime [CAZ], ceftazidime-avibactam [CZA], colistin [CST], aztreonam [ATM], amikacin [AMK], ciprofloxacin [CIP], cefepime [FEP], and tigecycline [TGC]) for their susceptibility. The collection included Escherichia coli (n = 164), Klebsiella pneumoniae (n = 298), Enterobacter sp. (n = 159), Pseudomonas aeruginosa (n = 45), and Acinetobacter baumannii (n = 87). Resistance mechanisms included producers of carbapenemases and extended-spectrum β-lactamases (ESBLs). In addition, a series of colistin-resistant enterobacterial isolates (n = 74), including 15 MCR-1 producers, were tested. The MIC90 of cefiderocol was 2 mg/L, while those of comparative drugs were >64 mg/L for CT, MEM, CAZ, CZA, and AMK, >32 mg/L for ATM, >16 mg/L for FEP, 8 mg/L for CST, and 2 mg/L for TGC. The MIC50 of cefiderocol was 0.5 mg/L, while those of other drugs were >64 mg/L for CAZ, 64 mg/L for CT, >32 mg/L for ATM, >16 mg/L for FEP, 8 mg/L for MEM and AMK, >4 mg/L for CIP, 1 mg/L for CZA, 0.5 mg/L for TGC, and <0.5 mg/L for CST. Only 20 out of 753 strains showed MIC values of cefiderocol ≥8 μg/mL. Compared to the other drugs tested, cefiderocol was more active, with the exception of colistin and tigecycline showing equivalent activity against certain subgroups of bacteria.

UI MeSH Term Description Entries
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D002511 Cephalosporins A group of broad-spectrum antibiotics first isolated from the Mediterranean fungus ACREMONIUM. They contain the beta-lactam moiety thia-azabicyclo-octenecarboxylic acid also called 7-aminocephalosporanic acid. Antibiotics, Cephalosporin,Cephalosporanic Acid,Cephalosporin,Cephalosporin Antibiotic,Cephalosporanic Acids,Acid, Cephalosporanic,Acids, Cephalosporanic,Antibiotic, Cephalosporin,Cephalosporin Antibiotics
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006090 Gram-Negative Bacteria Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method. Gram Negative Bacteria
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000097602 Cefiderocol A siderophore cephalosporin with enhanced activity against GRAM-NEGATIVE AEROBIC BACTERIA. Cefiderocol Sulfate Tosylate,Fetroja,S-649266,S 649266,S649266
D016905 Gram-Negative Bacterial Infections Infections caused by bacteria that show up as pink (negative) when treated by the gram-staining method. Bacterial Infections, Gram-Negative,Infections, Gram-Negative Bacterial,Bacterial Infection, Gram-Negative,Gram Negative Bacterial Infections,Gram-Negative Bacterial Infection,Infection, Gram-Negative Bacterial
D024901 Drug Resistance, Multiple, Bacterial The ability of bacteria to resist or to become tolerant to several structurally and functionally distinct drugs simultaneously. This resistance may be acquired through gene mutation or foreign DNA in transmissible plasmids (R FACTORS). Drug Resistance, Extensive, Bacterial,Drug Resistance, Extensively, Bacterial,Extensive Antibacterial Drug Resistance,Extensively Antibacterial Drug Resistance,Multidrug Resistance, Bacterial,Multiple Antibacterial Drug Resistance,Bacterial Multidrug Resistance,Bacterial Multidrug Resistances,Resistance, Bacterial Multidrug

Related Publications

J Dobias, and V Dénervaud-Tendon, and L Poirel, and P Nordmann
December 2020, Pharmacotherapy,
J Dobias, and V Dénervaud-Tendon, and L Poirel, and P Nordmann
November 2020, Antimicrobial agents and chemotherapy,
J Dobias, and V Dénervaud-Tendon, and L Poirel, and P Nordmann
May 2021, The Journal of antimicrobial chemotherapy,
J Dobias, and V Dénervaud-Tendon, and L Poirel, and P Nordmann
March 2022, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
J Dobias, and V Dénervaud-Tendon, and L Poirel, and P Nordmann
July 2021, Expert review of clinical pharmacology,
J Dobias, and V Dénervaud-Tendon, and L Poirel, and P Nordmann
April 2022, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America,
J Dobias, and V Dénervaud-Tendon, and L Poirel, and P Nordmann
November 2019, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America,
J Dobias, and V Dénervaud-Tendon, and L Poirel, and P Nordmann
January 2021, Antimicrobial agents and chemotherapy,
J Dobias, and V Dénervaud-Tendon, and L Poirel, and P Nordmann
January 2018, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!