Effects of arachidonic acid on glutamate and gamma-aminobutyric acid uptake in primary cultures of rat cerebral cortical astrocytes and neurons. 1986

A C Yu, and P H Chan, and R A Fishman

The effects of arachidonic acid on glutamate and gamma-aminobutyric acid (GABA) uptake were studied in primary cultures of astrocytes and neurons prepared from rat cerebral cortex. The uptake rates of glutamate and GABA in astrocytic cultures were 10.4 nmol/mg protein/min and 0.125 nmol/mg protein/min, respectively. The uptake rates of glutamate and GABA in neuronal cultures were 3.37 nmol/mg protein/min and 1.53 nmol/mg protein/min. Arachidonic acid inhibited glutamate uptake in both astrocytes and neurons. The inhibitory effect was observed within 10 min of incubation with arachidonic acid and reached approximately 80% within 120 min in both types of culture. The arachidonic acid effect was not only time-dependent, but also dose-related. Arachidonic acid, at concentrations of 0.015 and 0.03 mumol/mg protein, significantly inhibited glutamate uptake in neurons, whereas 20 times higher concentrations were required for astrocytes. The effects of arachidonic acid were not as deleterious on GABA uptake as on glutamate uptake in both astrocytes and neurons. In astrocytes, GABA uptake was not affected by any of the doses of arachidonic acid studied (0.015-0.6 mumol/mg protein). In neuronal cultures, GABA uptake was inhibited, but not to the same degree observed with glutamate uptake. Lower doses of arachidonic acid (0.03 and 0.015 mumol/mg protein) did not affect neuronal GABA uptake. Other polyunsaturated fatty acids, such as docosahexaenoic acid, affected amino acid uptake in a manner similar to arachidonic acid in both astrocytes and neurons. However, saturated fatty acids, such as palmitic acid, exerted no such effect. The significance of the arachidonic acid-induced inhibition of neurotransmitter uptake in cultured brain cells in various pathological states is discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

A C Yu, and P H Chan, and R A Fishman
May 1993, Proceedings of the National Academy of Sciences of the United States of America,
A C Yu, and P H Chan, and R A Fishman
September 1968, Nature,
A C Yu, and P H Chan, and R A Fishman
January 1998, European journal of pharmacology,
A C Yu, and P H Chan, and R A Fishman
November 1984, Neuroscience letters,
A C Yu, and P H Chan, and R A Fishman
February 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
Copied contents to your clipboard!