The murine Hox-2 cluster of homeo box containing genes maps distal on chromosome 11 near the tail-short (Ts) locus. 1986

M Münke, and D R Cox, and I J Jackson, and B L Hogan, and U Francke

Two probes derived from a mouse recombinant lambda-clone (H24.1), that contains a sequence closely homologous to the Drosophila antennapedia homeo box, were mapped to mouse chromosome (MMU) 11 by filter hybridization of somatic cell hybrid DNA. This sequence is highly homologous to a human homeo box gene (HOX2) and appears to represent one of the two genes in the Hox-2 cluster previously assigned to MMU 11. To regionally map the Hox-2 cluster, we have carried out in situ hybridization of the two H24.1 probes and of an independently isolated Hox-2 probe. The autoradiographic silver grain distributions were similar in all three experiments with a peak over band 11D. This region contains the locus for the tail-short (Ts) mutation which causes skeletal abnormalities in heterozygotes and early embryonic death in homozygotes.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003412 Cricetulus A genus of the family Muridae consisting of eleven species. C. migratorius, the grey or Armenian hamster, and C. griseus, the Chinese hamster, are the two species used in biomedical research. Hamsters, Armenian,Hamsters, Chinese,Hamsters, Grey,Armenian Hamster,Armenian Hamsters,Chinese Hamster,Chinese Hamsters,Grey Hamster,Grey Hamsters,Hamster, Armenian,Hamster, Chinese,Hamster, Grey
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Münke, and D R Cox, and I J Jackson, and B L Hogan, and U Francke
February 1988, Genetics,
M Münke, and D R Cox, and I J Jackson, and B L Hogan, and U Francke
January 1987, Cytogenetics and cell genetics,
M Münke, and D R Cox, and I J Jackson, and B L Hogan, and U Francke
December 1996, Mammalian genome : official journal of the International Mammalian Genome Society,
M Münke, and D R Cox, and I J Jackson, and B L Hogan, and U Francke
November 1987, Developmental biology,
M Münke, and D R Cox, and I J Jackson, and B L Hogan, and U Francke
October 1987, The EMBO journal,
M Münke, and D R Cox, and I J Jackson, and B L Hogan, and U Francke
July 1987, Nucleic acids research,
M Münke, and D R Cox, and I J Jackson, and B L Hogan, and U Francke
November 1986, The EMBO journal,
M Münke, and D R Cox, and I J Jackson, and B L Hogan, and U Francke
August 1987, Genetics,
Copied contents to your clipboard!