Effects of age on the glucoregulatory response following acute glucoprivation induced by 2-deoxyglucose (2DG) in the adrenal medulla of Sprague Dawley rats. 2017

Nor Azura Muda, and Hajira Ramlan, and Hanafi A Damanhuri
Department of Biochemistry, Level 17 Preclinical Building, UKM Medical Centre, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur, Malaysia.

OBJECTIVE Impairment in glucose homeostasis is one of the factors that may alter the feeding drive, hunger and satiety signals, which essential to maintain a sufficient level of energy for daily activities especially among the elderly. Adrenal medulla is one of the important organs that involves in glucose homeostasis through secretion of catecholamines. The catecholamines biosynthesis pathway utilizes various enzymes and protein kinases. The aims of this study are to investigate the effects of age on the biosynthetic pathway of catecholamines in adrenal medulla by determining the level of blood glucose and blood catecholamines, the gene and protein expression of biosynthetic catecholamine enzymes (TH, DBH and PNMT) as well as protein kinase substrates that involved in the phosphorylation of TH in 2DG-induced rats. METHODS Adrenal medulla from male Sprague Dawley rats at the age of 3-months (n=12) and 24-months (n=12) were further divided into two groups: 1) treatment group with 2DG to create glucoprivation condition and 2) the vehicle group which received normal saline as control. RESULTS The results showed that the level of glucose, adrenaline and noradrenaline were increased in response to acute glucoprivation conditions in both young and old rats. No age-related differences were found in the basal gene expression of the enzymes that involved in the catecholamines biosynthesis pathway. Interestingly the expressions of TH and DBH protein as well as the level of TH phosphorylation at Ser40, PKA, PKC and ERK1/2 substrates were higher in basal condition of the aged rats. However, contradicted findings were obtained in glucoprivic condition, which the protein expressions of DBH, pERK1/2 and substrates for pPKC were increased in young rats. Only substrate for pCDK was highly expressed in the old rats in the glucoprivic condition, while pPKC and pERK1/2 were decreased significantly. The results demonstrate that adrenal medulla of young and old rats are responsive to glucose deficit and capable to restore the blood glucose level by increasing the levels of blood catecholamines. CONCLUSIONS The present findings also suggest that, at least in rats, aging alters the protein expression of the biosynthetic catecholamine enzymes as well as protein kinase substrates that may attenuate the response to glucoprivation.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010625 Phenylethanolamine N-Methyltransferase A methyltransferase that catalyzes the reaction of S-adenosyl-L-methionine and phenylethanolamine to yield S-adenosyl-L-homocysteine and N-methylphenylethanolamine. It can act on various phenylethanolamines and converts norepinephrine into epinephrine. (From Enzyme Nomenclature, 1992) EC 2.1.1.28. Phenethanolamine N-Methyltransferase,Noradrenalin N-Methyltransferase,Noradrenaline N-Methyltransferase,Norepinephrine Methyltransferase,Norepinephrine N-Methyltransferase,Methyltransferase, Norepinephrine,Noradrenalin N Methyltransferase,Noradrenaline N Methyltransferase,Norepinephrine N Methyltransferase,Phenethanolamine N Methyltransferase,Phenylethanolamine N Methyltransferase
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D003847 Deoxyglucose 2-Deoxy-D-arabino-hexose. An antimetabolite of glucose with antiviral activity. 2-Deoxy-D-glucose,2-Deoxyglucose,2-Desoxy-D-glucose,2 Deoxy D glucose,2 Deoxyglucose,2 Desoxy D glucose
D004299 Dopamine beta-Hydroxylase Dopamine beta-Monooxygenase,Dopamine beta Hydroxylase,Dopamine beta Monooxygenase,beta-Hydroxylase, Dopamine,beta-Monooxygenase, Dopamine
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal

Related Publications

Nor Azura Muda, and Hajira Ramlan, and Hanafi A Damanhuri
June 1995, Shock (Augusta, Ga.),
Nor Azura Muda, and Hajira Ramlan, and Hanafi A Damanhuri
November 1998, Journal of toxicology and environmental health. Part A,
Nor Azura Muda, and Hajira Ramlan, and Hanafi A Damanhuri
June 1998, Journal of toxicology and environmental health. Part A,
Nor Azura Muda, and Hajira Ramlan, and Hanafi A Damanhuri
April 1997, Industrial health,
Nor Azura Muda, and Hajira Ramlan, and Hanafi A Damanhuri
April 2001, Experimental and molecular pathology,
Nor Azura Muda, and Hajira Ramlan, and Hanafi A Damanhuri
January 1993, Archiv der Pharmazie,
Nor Azura Muda, and Hajira Ramlan, and Hanafi A Damanhuri
May 2007, Journal of the American Association for Laboratory Animal Science : JAALAS,
Nor Azura Muda, and Hajira Ramlan, and Hanafi A Damanhuri
August 2012, Planta medica,
Nor Azura Muda, and Hajira Ramlan, and Hanafi A Damanhuri
December 1995, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!