Cytotoxicity of S-(1,2-dichlorovinyl)glutathione and S-(1,2-dichlorovinyl)-L-cysteine in isolated rat kidney cells. 1986

L H Lash, and M W Anders

S-(1,2-Dichlorovinyl)glutathione (DCVG) and S-(1,2-dichlorovinyl)-L-cysteine (DCVC) produced time- and concentration-dependent cell death in isolated rat kidney proximal tubular cells. AT-125 blocked and glycylglycine potentiated DCVG toxicity, indicating that metabolism by gamma-glutamyltransferase is required. S-(1,2-Dichlorovinyl)-L-cysteinylglycine, a putative metabolite of DCVG, also produced cell death, which was prevented by 1,10-phenanthroline, phenylalanylglycine, and aminooxyacetic acid, inhibitors of aminopeptidase M, cysteinylglycine dipeptidase, and cysteine conjugate beta-lyase, respectively. Aminooxyacetic acid and probenecid protected against DCVC toxicity, indicating a role for metabolism by cysteine conjugate beta-lyase and organic anion transport, respectively. DCVC produced a small decrease in cellular glutathione concentrations and did not change cellular glutathione disulfide concentrations or initiate lipid peroxidation. DCVC caused a large decrease in cellular glutamate and ATP concentrations with a parallel decrease in the total adenine nucleotide pool; these changes were partially prevented by aminooxyacetic acid. Both DCVG and DCVC inhibited succinate-dependent oxygen consumption, but DCVC had no effect when glutamate + malate or ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine were the electron donors. DCVC inhibited mitochondrial, but not microsomal, Ca2+ sequestration. These alterations in mitochondrial function were partially prevented by inhibition of DCVG and DCVC metabolism and were strongly correlated with decreases in cell viability, indicating that mitochondria may be the primary targets of nephrotoxic cysteine S-conjugates.

UI MeSH Term Description Entries
D007555 Isoxazoles Azoles with an OXYGEN and a NITROGEN next to each other at the 1,2 positions, in contrast to OXAZOLES that have nitrogens at the 1,3 positions. Isoxazole
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D008297 Male Males
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D010618 Phenanthrolines Phenanthroline
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D004151 Dipeptides Peptides composed of two amino acid units. Dipeptide
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response

Related Publications

L H Lash, and M W Anders
September 1971, Biochemical pharmacology,
L H Lash, and M W Anders
March 1963, Journal of medicinal chemistry,
L H Lash, and M W Anders
March 1965, Archives of biochemistry and biophysics,
Copied contents to your clipboard!