Enzyme-linked immunosorbent assay for adherence of bacteria to animal cells. 1986

I Ofek, and H S Courtney, and D M Schifferli, and E H Beachey

Epithelial cells scraped from human oral mucosa and from pig intestines were immobilized onto the flat bottom surfaces of microtiter plates to study the adherence of various bacterial species to host cells. Bacterial adherence was quantitated either by an enzyme-linked immunosorbent assay technique with specific antibacterial serum as the first antibody followed by peroxidase-conjugated second antibody or by using biotinylated bacteria and avidin-peroxidase as the detecting agent. Unlabeled Escherichia coli and purified E. coli 987P fimbriae inhibited the adherence of biotinylated E. coli to immobilized enterocytes. The adherence of a mannose-sensitive strain of E. coli to immobilized oral epithelial cells was inhibited by mannose derivatives. The adherence of fimbriated E. coli 987P to immobilized enterocytes was approximately four times higher than the adherence of a nonfimbriated variant of the same strain. The adherence of Streptococcus pyogenes to oral cells was detected in the range of 10 to 150 bacteria per cell and was inhibited by lipoteichoic acid and albumin. The data suggest that the putative receptors which bind bacteria on the immobilized cells retain a functional form similar to that of native cells in suspension. The proposed adherence assay is easy to perform, allows the detection of specific adherence of test bacteria, and provides objective quantitation of adherence with a sensitivity of 10 bacteria per cell. Most importantly, the assay allows the testing of many variables in the same day.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D009061 Mouth Mucosa Lining of the ORAL CAVITY, including mucosa on the GUMS; the PALATE; the LIP; the CHEEK; floor of the mouth; and other structures. The mucosa is generally a nonkeratinized stratified squamous EPITHELIUM covering muscle, bone, or glands but can show varying degree of keratinization at specific locations. Buccal Mucosa,Oral Mucosa,Mucosa, Mouth,Mucosa, Oral
D010861 Fimbriae, Bacterial Thin, hairlike appendages, 1 to 20 microns in length and often occurring in large numbers, present on the cells of gram-negative bacteria, particularly Enterobacteriaceae and Neisseria. Unlike flagella, they do not possess motility, but being protein (pilin) in nature, they possess antigenic and hemagglutinating properties. They are of medical importance because some fimbriae mediate the attachment of bacteria to cells via adhesins (ADHESINS, BACTERIAL). Bacterial fimbriae refer to common pili, to be distinguished from the preferred use of "pili", which is confined to sex pili (PILI, SEX). Bacterial Fimbriae,Bacterial Pili,Common Fimbriae,Common Pili,Pili, Bacterial,Pili, Common,Bacterial Fimbria,Bacterial Pilus,Common Fimbria,Common Pilus,Fimbria, Bacterial,Pilus, Bacterial,Fimbria, Common,Fimbriae, Common,Pilus, Common
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001422 Bacterial Adhesion Physicochemical property of fimbriated (FIMBRIAE, BACTERIAL) and non-fimbriated bacteria of attaching to cells, tissue, and nonbiological surfaces. It is a factor in bacterial colonization and pathogenicity. Adhesion, Bacterial,Adhesions, Bacterial,Bacterial Adhesions
D013297 Streptococcus pyogenes A species of gram-positive, coccoid bacteria isolated from skin lesions, blood, inflammatory exudates, and the upper respiratory tract of humans. It is a group A hemolytic Streptococcus that can cause SCARLET FEVER and RHEUMATIC FEVER. Flesh-Eating Bacteria,Streptococcus Group A,Bacteria, Flesh-Eating

Related Publications

I Ofek, and H S Courtney, and D M Schifferli, and E H Beachey
January 1990, Methods in enzymology,
I Ofek, and H S Courtney, and D M Schifferli, and E H Beachey
January 2000, Journal of immunoassay,
I Ofek, and H S Courtney, and D M Schifferli, and E H Beachey
October 1987, The Journal of infectious diseases,
I Ofek, and H S Courtney, and D M Schifferli, and E H Beachey
September 1983, The Journal of infectious diseases,
I Ofek, and H S Courtney, and D M Schifferli, and E H Beachey
July 1978, Science (New York, N.Y.),
I Ofek, and H S Courtney, and D M Schifferli, and E H Beachey
July 1990, Journal of immunological methods,
I Ofek, and H S Courtney, and D M Schifferli, and E H Beachey
March 1999, Contemporary topics in laboratory animal science,
I Ofek, and H S Courtney, and D M Schifferli, and E H Beachey
October 2011, Biomacromolecules,
I Ofek, and H S Courtney, and D M Schifferli, and E H Beachey
January 2005, Methods in molecular biology (Clifton, N.J.),
I Ofek, and H S Courtney, and D M Schifferli, and E H Beachey
January 1994, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!