Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux. 2017

Wei Xing, and Lei Yang, and Yue Peng, and Qianlu Wang, and Min Gao, and Mingshi Yang, and Xianzhong Xiao
Department of Intensive Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, P.R. China.

Sepsis-led mitochondrial dysfunction has become a critical pathophysiological procedure in sepsis. Since ginsenosides have been applied in the treatment of mitochondrial dysfunction, ginsenoside Rg3 was employed to study its effects on the mitochondrial dysfunction induced by sepsis. The apoptosis rate, oxygen consumption rate (OCR), reactive oxygen species (ROS), antioxidant glutathione (GSH) pools, and mitochondrial transmembrane potential (MTP) were determined in LPS-induced sepsis hepatocytes treated with different concentrations of Rg3. Then, the protein expression levels of mitochondrial biogenesis related transcription factors, autophagy-related proteins, and AMP-activated protein kinase (AMPK) signal pathway related proteins were determined by Western blotting in both in vitro and in vivo sepsis models. Rg3 shows functions of promotion of OCR, attenuation of ROS, and maintenance of GSH pools, and its conjugating activity in the in vitro sepsis models. Rg3-treated cells were observed to have a higher MTP value compared with the LPS only induced cells. Moreover, Rg3 treatment can inhibit mitochondrial dysfunction via increasing the protein expression levels of mitochondrial biogenesis related transcription factors. Rg3 treatment has the function of inhibitor of apoptosis of human primary hepatocytes, and Rg3 can up-regulate the autophagy-related proteins and activate AMPK signal pathway in sepsis models. Meanwhile, the mitochondrial protective function exerted by Rg3 decreased after the autophagy inhibitors or AMPK inhibitor treatment in LPS-induced human primary hepatocytes. Rg3 can improve mitochondrial dysfunction by regulating autophagy in mitochondria via activating the AMPK signal pathway, thus protecting cell and organ injuries caused by sepsis.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001343 Autophagy The segregation and degradation of various cytoplasmic constituents via engulfment by MULTIVESICULAR BODIES; VACUOLES; or AUTOPHAGOSOMES and their digestion by LYSOSOMES. It plays an important role in BIOLOGICAL METAMORPHOSIS and in the removal of bone by OSTEOCLASTS. Defective autophagy is associated with various diseases, including NEURODEGENERATIVE DISEASES and cancer. Autophagocytosis,ER-Phagy,Lipophagy,Nucleophagy,Reticulophagy,Ribophagy,Autophagy, Cellular,Cellular Autophagy,ER Phagy
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D055372 AMP-Activated Protein Kinases Intracellular signaling protein kinases that play a signaling role in the regulation of cellular energy metabolism. Their activity largely depends upon the concentration of cellular AMP which is increased under conditions of low energy or metabolic stress. AMP-activated protein kinases modify enzymes involved in LIPID METABOLISM, which in turn provide substrates needed to convert AMP into ATP. 5'-AMP-Activated Protein Kinase,AMP-Activated Kinase,AMP-Activated Protein Kinase,AMP-Activated Protein Kinase alpha Subunit,AMP-Activated Protein Kinase alpha Subunits,AMP-Activated Protein Kinase beta Subunit,AMP-Activated Protein Kinase beta Subunits,AMP-Activated Protein Kinase gamma Subunit,AMP-Activated Protein Kinase gamma Subunits,PRKAA,5' AMP Activated Protein Kinase,AMP Activated Kinase,AMP Activated Protein Kinase,AMP Activated Protein Kinase alpha Subunit,AMP Activated Protein Kinase alpha Subunits,AMP Activated Protein Kinase beta Subunit,AMP Activated Protein Kinase beta Subunits,AMP Activated Protein Kinase gamma Subunit,AMP Activated Protein Kinase gamma Subunits,AMP Activated Protein Kinases
D056486 Chemical and Drug Induced Liver Injury A spectrum of clinical liver diseases ranging from mild biochemical abnormalities to ACUTE LIVER FAILURE, caused by drugs, drug metabolites, herbal and dietary supplements and chemicals from the environment. Drug-Induced Liver Injury,Liver Injury, Drug-Induced,Acute Liver Injury, Drug-Induced,Chemically-Induced Liver Toxicity,Drug-Induced Acute Liver Injury,Drug-Induced Liver Disease,Hepatitis, Drug-Induced,Hepatitis, Toxic,Liver Injury, Drug-Induced, Acute,Toxic Hepatitis,Acute Liver Injury, Drug Induced,Chemically Induced Liver Toxicity,Chemically-Induced Liver Toxicities,Disease, Drug-Induced Liver,Diseases, Drug-Induced Liver,Drug Induced Acute Liver Injury,Drug Induced Liver Disease,Drug Induced Liver Injury,Drug-Induced Hepatitides,Drug-Induced Hepatitis,Drug-Induced Liver Diseases,Drug-Induced Liver Injuries,Hepatitides, Drug-Induced,Hepatitides, Toxic,Hepatitis, Drug Induced,Injuries, Drug-Induced Liver,Injury, Drug-Induced Liver,Liver Disease, Drug-Induced,Liver Diseases, Drug-Induced,Liver Injuries, Drug-Induced,Liver Injury, Drug Induced,Liver Toxicities, Chemically-Induced,Liver Toxicity, Chemically-Induced,Toxic Hepatitides,Toxicities, Chemically-Induced Liver,Toxicity, Chemically-Induced Liver

Related Publications

Wei Xing, and Lei Yang, and Yue Peng, and Qianlu Wang, and Min Gao, and Mingshi Yang, and Xianzhong Xiao
December 2016, Oncotarget,
Wei Xing, and Lei Yang, and Yue Peng, and Qianlu Wang, and Min Gao, and Mingshi Yang, and Xianzhong Xiao
November 2020, Drug development research,
Wei Xing, and Lei Yang, and Yue Peng, and Qianlu Wang, and Min Gao, and Mingshi Yang, and Xianzhong Xiao
August 2021, Clinical and translational medicine,
Wei Xing, and Lei Yang, and Yue Peng, and Qianlu Wang, and Min Gao, and Mingshi Yang, and Xianzhong Xiao
April 2020, Cardiovascular diagnosis and therapy,
Wei Xing, and Lei Yang, and Yue Peng, and Qianlu Wang, and Min Gao, and Mingshi Yang, and Xianzhong Xiao
November 2021, Journal of biochemical and molecular toxicology,
Wei Xing, and Lei Yang, and Yue Peng, and Qianlu Wang, and Min Gao, and Mingshi Yang, and Xianzhong Xiao
September 2023, Archives of physiology and biochemistry,
Wei Xing, and Lei Yang, and Yue Peng, and Qianlu Wang, and Min Gao, and Mingshi Yang, and Xianzhong Xiao
February 2021, Cell death & disease,
Wei Xing, and Lei Yang, and Yue Peng, and Qianlu Wang, and Min Gao, and Mingshi Yang, and Xianzhong Xiao
January 2022, Journal of biochemical and molecular toxicology,
Wei Xing, and Lei Yang, and Yue Peng, and Qianlu Wang, and Min Gao, and Mingshi Yang, and Xianzhong Xiao
February 2015, Biomedical and environmental sciences : BES,
Wei Xing, and Lei Yang, and Yue Peng, and Qianlu Wang, and Min Gao, and Mingshi Yang, and Xianzhong Xiao
December 2018, Aging,
Copied contents to your clipboard!