Dose-response curves of central and peripheral airways to nicotine injections in dogs. 1986

M Nakamura, and T Haga, and M Miyano, and H Sasaki, and T Takishima

The dose-response curves of the central and peripheral airways to intravenously injected nicotine were studied in 55 anesthetized dogs. With intact vagi, nicotine caused a dose-dependent increase in central airway resistance (Rc) similar to the increase in peripheral airway resistance (Rp) at concentrations ranging from 4 to 64 micrograms/kg. However, the responses of both Rc and Rp fell progressively when sequential doses of nicotine greater than 256 micrograms/kg were administered. With intact vagi and the administration of propranolol, there was a greater increase in Rp than in Rc at a nicotine dose of 64 micrograms/kg (P less than 0.05). With vagotomy, the responsiveness of both central and peripheral airways to nicotine decreased with doses of nicotine less than 64 micrograms/kg, but with doses of nicotine greater than 256 micrograms/kg the suppressive effect of nicotine on both Rc and Rp was less than that seen with intact vagi. Under conditions in which the vagi were cut and atropine administered, the responsiveness of nicotine was even further depressed. Combinations either of atropine and chlorpheniramine or atropine and phenoxybenzamine also completely blocked reactions to nicotine. Additionally reactions to nicotine were completely blocked by hexamethonium. These results suggest that nicotine increases both Rc and Rp mainly through a vagal reflex and stimulation of the parasympathetic ganglia.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009538 Nicotine Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine Bitartrate,Nicotine Tartrate
D010643 Phenoxybenzamine An alpha-adrenergic antagonist with long duration of action. It has been used to treat hypertension and as a peripheral vasodilator. Dibenylene,Dibenyline,Dibenziran,Dibenzylin,Dibenzyline,Dibenzyran,Phenoxybenzamine Hydrochloride,Hydrochloride, Phenoxybenzamine
D011433 Propranolol A widely used non-cardioselective beta-adrenergic antagonist. Propranolol has been used for MYOCARDIAL INFARCTION; ARRHYTHMIA; ANGINA PECTORIS; HYPERTENSION; HYPERTHYROIDISM; MIGRAINE; PHEOCHROMOCYTOMA; and ANXIETY but adverse effects instigate replacement by newer drugs. Dexpropranolol,AY-20694,Anaprilin,Anapriline,Avlocardyl,Betadren,Dociton,Inderal,Obsidan,Obzidan,Propanolol,Propranolol Hydrochloride,Rexigen,AY 20694,AY20694,Hydrochloride, Propranolol
D002744 Chlorpheniramine A histamine H1 antagonist used in allergic reactions, hay fever, rhinitis, urticaria, and asthma. It has also been used in veterinary applications. One of the most widely used of the classical antihistaminics, it generally causes less drowsiness and sedation than PROMETHAZINE. Chlorphenamine,Chlorprophenpyridamine,Aller-Chlor,Antihistaminico Llorens,Chlo-Amine,Chlor-100,Chlor-Trimeton,Chlor-Tripolon,Chlorpheniramine Maleate,Chlorpheniramine Tannate,Chlorpro,Chlorspan 12,Chlortab-4,Cloro-Trimeton,Efidac 24,Kloromin,Piriton,Teldrin,Maleate, Chlorpheniramine,Tannate, Chlorpheniramine
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006584 Hexamethonium Compounds Compounds containing the hexamethylenebis(trimethylammonium) cation. Members of this group frequently act as antihypertensive agents and selective ganglionic blocking agents. Compounds, Hexamethonium
D000403 Airway Resistance Physiologically, the opposition to flow of air caused by the forces of friction. As a part of pulmonary function testing, it is the ratio of driving pressure to the rate of air flow. Airway Resistances,Resistance, Airway,Resistances, Airway
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Nakamura, and T Haga, and M Miyano, and H Sasaki, and T Takishima
January 1967, Aspen Emphysema Conference,
M Nakamura, and T Haga, and M Miyano, and H Sasaki, and T Takishima
February 1978, Zeitschrift fur Gastroenterologie,
M Nakamura, and T Haga, and M Miyano, and H Sasaki, and T Takishima
June 1969, Journal of applied physiology,
M Nakamura, and T Haga, and M Miyano, and H Sasaki, and T Takishima
January 1982, Respiration; international review of thoracic diseases,
M Nakamura, and T Haga, and M Miyano, and H Sasaki, and T Takishima
January 1978, Scandinavian journal of gastroenterology,
M Nakamura, and T Haga, and M Miyano, and H Sasaki, and T Takishima
October 1986, Journal of applied physiology (Bethesda, Md. : 1985),
M Nakamura, and T Haga, and M Miyano, and H Sasaki, and T Takishima
September 1982, Cancer treatment reports,
M Nakamura, and T Haga, and M Miyano, and H Sasaki, and T Takishima
November 1999, Obesity research,
M Nakamura, and T Haga, and M Miyano, and H Sasaki, and T Takishima
May 1974, Journal of applied physiology,
M Nakamura, and T Haga, and M Miyano, and H Sasaki, and T Takishima
November 1981, Veterinary medicine, small animal clinician : VM, SAC,
Copied contents to your clipboard!