High glucose and free fatty acids induce endothelial progenitor cell senescence via PGC-1α/SIRT1 signaling pathway. 2017

Xiaoxiao Song, and Boyun Yang, and Fuyu Qiu, and Minyue Jia, and Guosheng Fu
The Department of Endocrinology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China.

The objective of the research was to investigate the function of endothelial progenitor cells (EPCs) in the conditions of high glucose and lipids, which has been widely used to mimic the metabolic disorder that occurs in type 2 diabetic mellitus, and further to verify the role of PGC-1α and SIRT1, cellular energy metabolism regulators, in the process of senescence of EPCs with these combined stimuli. Circulating EPCs were incubated in absence or presence of high glucose (25 mM), FFA (200 µM) or both. EPCs senescence was assessed by β-galactosidase staining, EPCs telomerase activity was measured by telomeric repeat ampli-fication protocol assay, in vitro angiogenesis assay and MTT assays were performed to assess angiogenesis and proliferation ability of EPCs. The results showed that combined stimuli inhibited EPCs reendothelialization ability in vitro, accelerated EPCs senescence and decreased the telomerase activity. Meanwhile, with combined stimuli, the expression of PGC-1α increased whereas SIRT1 expression decreased in EPCs accompanied by activation of P53/P21 signaling pathway. Conversely, transfection of EPCs with PGC-1α-siRNA rescued EPCs premature senescence and up-regulated SIRT1 and decreased P53/P21 expression, correlating closely with the down-regulation of PGC-1α itself. In addition, the combined stimuli induced up-regulation of PGC-1α expression was partly mediated by ROS and P38 signaling pathway. Overall, the data presented here identify PGC-1α as a potent negative regulator of EPCs' senescence under combined stimuli, which is partly mediated by SIRT1/P53/P21 signaling pathway.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000071248 Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha A transcriptional co-activator for NUCLEAR RECEPTORS. It is characterized by an N-terminal LxxLL sequence, a region that interacts with PPAR GAMMA, and a C-terminal RNA RECOGNITION MOTIF. It increases expression of MITOCHONDRIAL UNCOUPLING PROTEIN to regulate genes involved in metabolic reprogramming in response to dietary restriction and the integration of CIRCADIAN RHYTHMS with ENERGY METABOLISM. PGC-1-alpha Protein,PPARGC-1-alpha Protein,PPARGC1a Protein,PGC 1 alpha Protein,PPARGC 1 alpha Protein,Peroxisome Proliferator Activated Receptor Gamma Coactivator 1 alpha
D001616 beta-Galactosidase A group of enzymes that catalyzes the hydrolysis of terminal, non-reducing beta-D-galactose residues in beta-galactosides. Deficiency of beta-Galactosidase A1 may cause GANGLIOSIDOSIS, GM1. Lactases,Dairyaid,Lactaid,Lactogest,Lactrase,beta-D-Galactosidase,beta-Galactosidase A1,beta-Galactosidase A2,beta-Galactosidase A3,beta-Galactosidases,lac Z Protein,Protein, lac Z,beta D Galactosidase,beta Galactosidase,beta Galactosidase A1,beta Galactosidase A2,beta Galactosidase A3,beta Galactosidases
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015536 Down-Regulation A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Down-Regulation,Down-Regulation (Physiology),Downregulation,Down Regulation,Down-Regulation, Receptor
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D016922 Cellular Senescence Process by which cells irreversibly stop dividing and enter a state of permanent growth arrest without undergoing CELL DEATH. Senescence can be induced by DNA DAMAGE or other cellular stresses, such as OXIDATIVE STRESS. Aging, Cell,Cell Aging,Cell Senescence,Replicative Senescence,Senescence, Cellular,Senescence, Replicative,Cell Ageing,Cellular Ageing,Cellular Aging,Ageing, Cell,Ageing, Cellular,Aging, Cellular,Senescence, Cell

Related Publications

Xiaoxiao Song, and Boyun Yang, and Fuyu Qiu, and Minyue Jia, and Guosheng Fu
June 2008, Biochimica et biophysica acta,
Xiaoxiao Song, and Boyun Yang, and Fuyu Qiu, and Minyue Jia, and Guosheng Fu
January 2022, International journal of molecular sciences,
Xiaoxiao Song, and Boyun Yang, and Fuyu Qiu, and Minyue Jia, and Guosheng Fu
December 2022, Biochemical and biophysical research communications,
Xiaoxiao Song, and Boyun Yang, and Fuyu Qiu, and Minyue Jia, and Guosheng Fu
June 2022, Phytomedicine : international journal of phytotherapy and phytopharmacology,
Xiaoxiao Song, and Boyun Yang, and Fuyu Qiu, and Minyue Jia, and Guosheng Fu
September 2016, Biochemical and biophysical research communications,
Xiaoxiao Song, and Boyun Yang, and Fuyu Qiu, and Minyue Jia, and Guosheng Fu
August 2016, Endocrine,
Xiaoxiao Song, and Boyun Yang, and Fuyu Qiu, and Minyue Jia, and Guosheng Fu
January 2017, Oxidative medicine and cellular longevity,
Xiaoxiao Song, and Boyun Yang, and Fuyu Qiu, and Minyue Jia, and Guosheng Fu
December 2023, Journal of receptor and signal transduction research,
Xiaoxiao Song, and Boyun Yang, and Fuyu Qiu, and Minyue Jia, and Guosheng Fu
July 2022, Biochemical and biophysical research communications,
Copied contents to your clipboard!