Simulation Analysis of Linear Quadratic Regulator Control of Sagittal-Plane Human Walking-Implications for Exoskeletons. 2017

Raviraj Nataraj, and Antonie J van den Bogert

The linear quadratic regulator (LQR) is a classical optimal control approach that can regulate gait dynamics about target kinematic trajectories. Exoskeletons to restore gait function have conventionally utilized time-varying proportional-derivative (PD) control of leg joints. But, these PD parameters are not uniquely optimized for whole-body (full-state) performance. The objective of this study was to investigate the effectiveness of LQR full-state feedback compared to PD control to maintain bipedal walking of a sagittal-plane computational model against force disturbances. Several LQR controllers were uniquely solved with feedback gains optimized for different levels of tracking capability versus control effort. The main implications to future exoskeleton control systems include (1) which LQR controllers out-perform PD controllers in walking maintenance and effort, (2) verifying that LQR desirably produces joint torques that oppose rapidly growing joint state errors, and (3) potentially equipping accurate sensing systems for nonjoint states such as hip-position and torso orientation. The LQR controllers capable of longer walk times than respective PD controllers also required less control effort. During sudden leg collapse, LQR desirably behaved like PD by generating feedback torques that opposed the direction of leg-joint errors. Feedback from nonjoint states contributed to over 50% of the LQR joint torques and appear critical for whole-body LQR control. While LQR control poses implementation challenges, such as more sensors for full-state feedback and operation near the desired trajectories, it offers significant performance advantages over PD control.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D005684 Gait Manner or style of walking. Gaits
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D055595 Mechanical Phenomena The properties and processes of materials that affect their behavior under force. Mechanical Concepts,Mechanical Processes,Mechanical Phenomenon,Mechanical Process,Concept, Mechanical,Concepts, Mechanical,Mechanical Concept,Phenomena, Mechanical,Phenomenon, Mechanical,Process, Mechanical,Processes, Mechanical
D025461 Feedback, Physiological A mechanism of communication with a physiological system for homeostasis, adaptation, etc. Physiological feedback is mediated through extensive feedback mechanisms that use physiological cues as feedback loop signals to control other systems. Feedback, Biochemical,Feedback Inhibition, Biochemical,Feedback Regulation, Biochemical,Feedback Stimulation, Biochemical,Negative Feedback, Biochemical,Positive Feedback, Biochemical,Biochemical Feedback,Biochemical Feedback Inhibition,Biochemical Feedback Inhibitions,Biochemical Feedback Regulation,Biochemical Feedback Regulations,Biochemical Feedback Stimulation,Biochemical Feedback Stimulations,Biochemical Feedbacks,Biochemical Negative Feedback,Biochemical Negative Feedbacks,Biochemical Positive Feedback,Biochemical Positive Feedbacks,Feedback Inhibitions, Biochemical,Feedback Regulations, Biochemical,Feedback Stimulations, Biochemical,Feedback, Biochemical Negative,Feedback, Biochemical Positive,Feedbacks, Biochemical,Feedbacks, Biochemical Negative,Feedbacks, Biochemical Positive,Feedbacks, Physiological,Inhibition, Biochemical Feedback,Inhibitions, Biochemical Feedback,Negative Feedbacks, Biochemical,Physiological Feedback,Physiological Feedbacks,Positive Feedbacks, Biochemical,Regulation, Biochemical Feedback,Regulations, Biochemical Feedback,Stimulation, Biochemical Feedback,Stimulations, Biochemical Feedback

Related Publications

Raviraj Nataraj, and Antonie J van den Bogert
March 2016, Gait & posture,
Raviraj Nataraj, and Antonie J van den Bogert
January 1987, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society,
Raviraj Nataraj, and Antonie J van den Bogert
October 2008, Journal of biomechanical engineering,
Raviraj Nataraj, and Antonie J van den Bogert
January 1988, International journal of radiation oncology, biology, physics,
Raviraj Nataraj, and Antonie J van den Bogert
June 2012, Human movement science,
Raviraj Nataraj, and Antonie J van den Bogert
May 2019, IEEE transactions on neural networks and learning systems,
Raviraj Nataraj, and Antonie J van den Bogert
May 2023, Journal of biomechanics,
Raviraj Nataraj, and Antonie J van den Bogert
November 2021, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Raviraj Nataraj, and Antonie J van den Bogert
December 2013, Journal of neurosurgery. Spine,
Raviraj Nataraj, and Antonie J van den Bogert
April 2020, Clinical oncology (Royal College of Radiologists (Great Britain)),
Copied contents to your clipboard!