Correlation between polymorphic DNA haplotypes at phenylalanine hydroxylase locus and clinical phenotypes of phenylketonuria. 1987

F Güttler, and F D Ledley, and A S Lidsky, and A G DiLella, and S E Sullivan, and S L Woo

Eight polymorphic sites for seven restriction endonucleases have been reported at the human phenylalanine hydroxylase locus. The composite profile of the presence or absence for each of the eight polymorphic sites within an allele defines the haplotype of the corresponding allele. Twelve such haplotypes associated with normal and mutant phenylalanine hydroxylase alleles have been identified in 33 Danish families with children with phenylketonuria. Of the 66 mutant alleles analyzed, 59 (89%) were associated with only four haplotypes. The identification of individual phenylalanine hydroxylase alleles by haplotype analysis enables correlation of the hyperphenylalaninemic phenotypes of the patients with their genotypes. Patients who were either homozygous or heterozygous for the mutant alleles of haplotypes 2 and 3 had a severe clinical course. Patients who had a mutant allele of either haplotype 1 or 4 usually had a less severe clinical phenotype. The recent demonstration that the mutation responsible for classic phenylketonuria associated with haplotype 3 is not present in mutant alleles of other haplotypes provides unambiguous evidence that there are multiple mutations in the phenylalanine hydroxylase gene and supports the hypothesis that different combinations of mutant alleles may be responsible for the clinical diversity of phenylketonuria.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010651 Phenylalanine Hydroxylase An enzyme of the oxidoreductase class that catalyzes the formation of L-TYROSINE, dihydrobiopterin, and water from L-PHENYLALANINE, tetrahydrobiopterin, and oxygen. Deficiency of this enzyme may cause PHENYLKETONURIAS and PHENYLKETONURIA, MATERNAL. EC 1.14.16.1. Phenylalanine 4-Hydroxylase,Phenylalanine 4-Monooxygenase,4-Hydroxylase, Phenylalanine,4-Monooxygenase, Phenylalanine,Hydroxylase, Phenylalanine,Phenylalanine 4 Hydroxylase,Phenylalanine 4 Monooxygenase
D010661 Phenylketonurias A group of autosomal recessive disorders marked by a deficiency of the hepatic enzyme PHENYLALANINE HYDROXYLASE or less frequently by reduced activity of DIHYDROPTERIDINE REDUCTASE (i.e., atypical phenylketonuria). Classical phenylketonuria is caused by a severe deficiency of phenylalanine hydroxylase and presents in infancy with developmental delay; SEIZURES; skin HYPOPIGMENTATION; ECZEMA; and demyelination in the central nervous system. (From Adams et al., Principles of Neurology, 6th ed, p952). Biopterin Deficiency,Dihydropteridine Reductase Deficiency Disease,Hyperphenylalaninemia, Non-Phenylketonuric,Phenylalanine Hydroxylase Deficiency Disease,BH4 Deficiency,DHPR Deficiency,Deficiency Disease, Dihydropteridine Reductase,Deficiency Disease, Phenylalanine Hydroxylase,Deficiency Disease, Phenylalanine Hydroxylase, Severe,Dihydropteridine Reductase Deficiency,Folling Disease,Folling's Disease,HPABH4C,Hyperphenylalaninaemia,Hyperphenylalaninemia Caused by a Defect in Biopterin Metabolism,Hyperphenylalaninemia, BH4-Deficient, C,Hyperphenylalaninemia, Tetrahydrobiopterin-Deficient, Due To DHPR Deficiency,Non-Phenylketonuric Hyperphenylalaninemia,Oligophrenia Phenylpyruvica,PAH Deficiency,PKU, Atypical,Phenylalanine Hydroxylase Deficiency,Phenylalanine Hydroxylase Deficiency Disease, Severe,Phenylketonuria,Phenylketonuria I,Phenylketonuria II,Phenylketonuria Type 2,Phenylketonuria, Atypical,Phenylketonuria, Classical,QDPR Deficiency,Quinoid Dihydropteridine Reductase Deficiency,Tetrahydrobiopterin Deficiency,Atypical PKU,Atypical Phenylketonuria,Biopterin Deficiencies,Classical Phenylketonuria,Deficiency, BH4,Deficiency, Biopterin,Deficiency, DHPR,Deficiency, Dihydropteridine Reductase,Deficiency, PAH,Deficiency, Phenylalanine Hydroxylase,Deficiency, QDPR,Deficiency, Tetrahydrobiopterin,Disease, Folling,Disease, Folling's,Hyperphenylalaninemia, Non Phenylketonuric,Non Phenylketonuric Hyperphenylalaninemia,Non-Phenylketonuric Hyperphenylalaninemias
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D006239 Haplotypes The genetic constitution of individuals with respect to one member of a pair of allelic genes, or sets of genes that are closely linked and tend to be inherited together such as those of the MAJOR HISTOCOMPATIBILITY COMPLEX. Haplotype

Related Publications

F Güttler, and F D Ledley, and A S Lidsky, and A G DiLella, and S E Sullivan, and S L Woo
February 1986, Lancet (London, England),
F Güttler, and F D Ledley, and A S Lidsky, and A G DiLella, and S E Sullivan, and S L Woo
May 1987, Human genetics,
F Güttler, and F D Ledley, and A S Lidsky, and A G DiLella, and S E Sullivan, and S L Woo
August 1989, American journal of human genetics,
F Güttler, and F D Ledley, and A S Lidsky, and A G DiLella, and S E Sullivan, and S L Woo
August 1989, American journal of human genetics,
F Güttler, and F D Ledley, and A S Lidsky, and A G DiLella, and S E Sullivan, and S L Woo
May 1991, Human genetics,
F Güttler, and F D Ledley, and A S Lidsky, and A G DiLella, and S E Sullivan, and S L Woo
February 1991, Human genetics,
F Güttler, and F D Ledley, and A S Lidsky, and A G DiLella, and S E Sullivan, and S L Woo
December 2012, Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = Chinese journal of medical genetics,
F Güttler, and F D Ledley, and A S Lidsky, and A G DiLella, and S E Sullivan, and S L Woo
November 1988, American journal of human genetics,
F Güttler, and F D Ledley, and A S Lidsky, and A G DiLella, and S E Sullivan, and S L Woo
December 1992, American journal of human genetics,
F Güttler, and F D Ledley, and A S Lidsky, and A G DiLella, and S E Sullivan, and S L Woo
March 1989, American journal of human genetics,
Copied contents to your clipboard!