Glutamate receptor agonists release [3H]GABA preferentially from horizontal cells. 1986

J Moran, and H Pasantes-Morales, and D A Redburn

A total of 5-6 different cell types in vertebrate retinas accumulate [3H]gamma-aminobutyric acid (GABA). In frog retina, specific populations of cells in the horizontal, amacrine and ganglion cell layers are labeled autoradiographically after a 15-min in vitro incubation with [3H]GABA. Cells which may be bipolar or interplexiform cells are also labeled. Similar autoradiographic patterns are observed in chick retina except for the absence of labeled bipolar or interplexiform cells. In rat retinas, [3H]GABA uptake is limited primarily to Muller and amacrine cells. Depolarizing glutamate receptor agonists (glutamate, aspartate and kainic acid) applied in an in vitro perfusion system, stimulated massive release of [3H]GABA from frog and chick retina but not from rat retina. Under these conditions, autoradiographic labeling of horizontal cells was virtually depleted, while labeling of other cell types remained robust. In contrast, potassium caused release of the label from all 3 types of retina, and loss of autoradiographic labeling occurred uniformly in all cell types. We conclude that [3H]GABA-accumulating horizontal cells possess depolarizing glutamate receptors and that activation of these receptors leads to a release of GABA stores. On the other hand, Muller cells and the various subclasses of [3H]GABA-accumulating amacrine, bipolar and/or interplexiform cells, do not release GABA in response to glutamate receptor stimulation and thus appear to be relatively insensitive to excitatory amino acids.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002645 Chickens Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA. Gallus gallus,Gallus domesticus,Gallus gallus domesticus,Chicken
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D017470 Receptors, Glutamate Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases. Excitatory Amino Acid Receptors,Glutamate Receptors,Receptors, Excitatory Amino Acid,Excitatory Amino Acid Receptor,Glutamate Receptor,Receptor, Glutamate

Related Publications

J Moran, and H Pasantes-Morales, and D A Redburn
November 1994, Brain research,
J Moran, and H Pasantes-Morales, and D A Redburn
June 1994, Neurochemistry international,
J Moran, and H Pasantes-Morales, and D A Redburn
May 1995, Annals of the New York Academy of Sciences,
J Moran, and H Pasantes-Morales, and D A Redburn
September 1983, Brain research,
J Moran, and H Pasantes-Morales, and D A Redburn
February 1999, Glia,
J Moran, and H Pasantes-Morales, and D A Redburn
September 1985, European journal of pharmacology,
J Moran, and H Pasantes-Morales, and D A Redburn
January 1995, Brain research bulletin,
J Moran, and H Pasantes-Morales, and D A Redburn
March 1983, Brain research,
Copied contents to your clipboard!