Lymphokine-activated killer (LAK) cells. II. Delineation of distinct murine LAK-precursor subpopulations. 1987

Z K Ballas, and W Rasmussen, and J K van Otegham

Lymphokine-activated killer (LAK) cells can lyse a number of tumor target cells regardless of whether the tumors are natural killer (NK) sensitive or resistant. LAK can also lyse autologous lymphoblasts that have been modified with 2,4,6-trinitrobenzene sulfonic acid (TNBS). In this study, we examined the surface markers of murine LAK precursors. It was found that depletion of Thy 1- or Lyt 2-bearing precursor cells abolished the ability of spleen cells to generate LAK against TNBS-self, but had no effect on the generation of LAK against tumor cells. Depletion of asialo-GM1 (AGM1)-bearing precursors abolished the generation of LAK against all target cells tested. Normal spleen cells were fractionated on a Percoll density gradient and two fractions were examined: fraction (Fxn) 3, which is enriched for NK activity but depleted of the ability to generate cytotoxic T lymphocytes (CTL), and Fxn 5, which had no NK activity but was enriched for the ability to generate CTL. Both fractions were capable of generating LAK, although Fxn 5 required a relatively larger amount of interleukin 2 (IL 2). Upon examination of the surface markers of LAK precursors in these fractions it was found that the precursors in Fxn 3 giving rise to LAK against tumors were Thy-1-, Lyt-2-, AGM1+, whereas the precursors in Fxn 5 were Thy-1+, Lyt-2+, AGM1+. The precursors generating LAK against TNBS-self were Thy-1+, Lyt-2+, AGM1+ in both fractions. The time kinetics of LAK generation in both fractions were different, with Fxn 3 showing much earlier kinetics. These data delineate at least two different LAK precursors defined by their buoyant density, by their surface markers, and by their susceptible target cells. These data also may resolve the confusion in the literature regarding the phenotype of LAK precursors.

UI MeSH Term Description Entries
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008222 Lymphokines Soluble protein factors generated by activated lymphocytes that affect other cells, primarily those involved in cellular immunity. Lymphocyte Mediators,Mediators, Lymphocyte
D005677 G(M1) Ganglioside A specific monosialoganglioside that accumulates abnormally within the nervous system due to a deficiency of GM1-b-galactosidase, resulting in GM1 gangliosidosis. GM1 Ganglioside,Monosialosyl Tetraglycosyl Ceramide,GM1a Monosialoganglioside,Ceramide, Monosialosyl Tetraglycosyl,Ganglioside, GM1,Monosialoganglioside, GM1a,Tetraglycosyl Ceramide, Monosialosyl
D006028 Glycosphingolipids Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage) Asialoganglioside,Asialogangliosides,Glycosphingolipid,Sphingoglycolipid,Sphingoglycolipids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D000950 Antigens, Ly A group of lymphocyte surface antigens located on mouse LYMPHOCYTES. Specific Ly antigens are useful markers for distinguishing subpopulations of lymphocytes. Ly Antigens
D000954 Antigens, Surface Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated. Cell Surface Antigens,Surface Antigens,Surface Markers, Immunological,Cell Surface Antigen,Immunologic Surface Markers,Markers, Immunological Surface,Surface Antigen,Surface Markers, Immunologic,Antigen, Cell Surface,Antigen, Surface,Antigens, Cell Surface,Immunological Surface Markers,Markers, Immunologic Surface,Surface Antigen, Cell,Surface Antigens, Cell
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

Z K Ballas, and W Rasmussen, and J K van Otegham
January 1987, Thymus,
Z K Ballas, and W Rasmussen, and J K van Otegham
July 1986, Journal of immunology (Baltimore, Md. : 1950),
Z K Ballas, and W Rasmussen, and J K van Otegham
January 1987, Progress in clinical and biological research,
Z K Ballas, and W Rasmussen, and J K van Otegham
July 1989, Cellular immunology,
Z K Ballas, and W Rasmussen, and J K van Otegham
April 1990, International journal of cancer,
Z K Ballas, and W Rasmussen, and J K van Otegham
August 1993, Journal of immunology (Baltimore, Md. : 1950),
Z K Ballas, and W Rasmussen, and J K van Otegham
April 1992, Sheng li ke xue jin zhan [Progress in physiology],
Z K Ballas, and W Rasmussen, and J K van Otegham
January 1989, Neoplasma,
Z K Ballas, and W Rasmussen, and J K van Otegham
May 1989, International journal of cancer,
Z K Ballas, and W Rasmussen, and J K van Otegham
January 1988, Princess Takamatsu symposia,
Copied contents to your clipboard!