Alpha-1 and alpha-2 adrenoceptor binding in cerebral cortex: competition studies with [3H]prazosin and [3H]idazoxan. 1987

T A Reader, and R Brière, and L Grondin

The tritiated adrenergic antagonists prazosin ([3H]PRZ) and idazoxan ([3H]IDA, or RX-781094) bind specifically and with high affinity in membrane preparations from cerebral cortex to alpha-1- and alpha-2-adrenoceptors respectively. Saturation experiments, performed to determine the density of receptors (Bmax; maximum binding capacity) and the dissociation constant (Kd 25 degrees C), were analyzed by the methods of Eadie and Hofstee, iterative modelling, and the procedure of Hill. The pharmacologic properties and specificity of the labelling was verified by displacement experiments using alpha-adrenergic antagonists and agonists. The antagonist drugs showed the following order of potency to displace [3H]prazosin: prazosin much greater than phentolamine much greater than corynanthine greater than pyrextramine much greater than yohimbine much greater than piperoxan greater than benextramine greater than idazoxan; for the agonists: clonidine much greater than (-)-noradrenaline much greater than (-)-adrenaline much greater than phenylephrine, while other drugs, such as (-)-propranolol, dopamine, (-)-isoproterenol and serotonin only competed with the alpha-1-ligand at concentrations above 20 microM. The alpha 2-sites labelled by [3H]idazoxan were characterized by the antagonist displacement sequence idazoxan much greater than phentolamine greater than yohimbine = greater than piperoxan much greater than pyrextramine much greater than benextramine much greater than prazosin much greater than corynanthine. The agonists order of potency to compete with [3H]idazoxan was clonidine much greater than phenylephrine = greater than (-)-adrenaline greater than (-)-noradrenaline, and for other related drugs it was (-)-propranolol much greater than dopamine much greater than serotonin greater than (-)-isoproterenol. These competition experiments clearly showed two pharmacologically distinct sites, but question the relative specificity of some of the adrenergic drugs.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011224 Prazosin A selective adrenergic alpha-1 antagonist used in the treatment of HEART FAILURE; HYPERTENSION; PHEOCHROMOCYTOMA; RAYNAUD DISEASE; PROSTATIC HYPERTROPHY; and URINARY RETENTION. Furazosin,Minipress,Pratsiol,Prazosin HCL,Prazosin Hydrochloride,HCL, Prazosin,Hydrochloride, Prazosin
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004146 Dioxanes Compounds that contain the structure 1,4-dioxane.
D004147 Dioxins A family of compounds that contain the 1,4-dioxin structure. Many specific dioxin derivatives are listed as CARCINOGENS; TERATOGENS; or MUTAGENS. Dioxin
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000317 Adrenergic alpha-Antagonists Drugs that bind to but do not activate alpha-adrenergic receptors thereby blocking the actions of endogenous or exogenous adrenergic agonists. Adrenergic alpha-antagonists are used in the treatment of hypertension, vasospasm, peripheral vascular disease, shock, and pheochromocytoma. Adrenergic alpha-Receptor Blockaders,alpha-Adrenergic Blocking Agents,alpha-Adrenergic Receptor Blockaders,alpha-Blockers, Adrenergic,Adrenergic alpha-Blockers,alpha-Adrenergic Antagonists,alpha-Adrenergic Blockers,Adrenergic alpha Antagonists,Adrenergic alpha Blockers,Adrenergic alpha Receptor Blockaders,Agents, alpha-Adrenergic Blocking,Antagonists, alpha-Adrenergic,Blockaders, Adrenergic alpha-Receptor,Blockaders, alpha-Adrenergic Receptor,Blockers, alpha-Adrenergic,Blocking Agents, alpha-Adrenergic,Receptor Blockaders, alpha-Adrenergic,alpha Adrenergic Antagonists,alpha Adrenergic Blockers,alpha Adrenergic Blocking Agents,alpha Adrenergic Receptor Blockaders,alpha Blockers, Adrenergic,alpha-Antagonists, Adrenergic,alpha-Receptor Blockaders, Adrenergic

Related Publications

T A Reader, and R Brière, and L Grondin
February 1986, European journal of pharmacology,
T A Reader, and R Brière, and L Grondin
February 1994, Journal of receptor research,
T A Reader, and R Brière, and L Grondin
June 1987, The Journal of pharmacology and experimental therapeutics,
T A Reader, and R Brière, and L Grondin
January 1980, British journal of pharmacology,
T A Reader, and R Brière, and L Grondin
July 1992, European journal of pharmacology,
T A Reader, and R Brière, and L Grondin
April 1991, Neuropharmacology,
Copied contents to your clipboard!