The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. 1987

D A Lewis, and M J Campbell, and S L Foote, and M Goldstein, and J H Morrison

An antiserum directed against tyrosine hydroxylase (TH), an enzyme involved in dopamine and norepinephrine synthesis, was used to visualize axons immunohistochemically in monkey neocortex. Labeled fibers were distributed throughout the entire neocortex, but they had striking patterns of regional and laminar specialization. For example, primary motor cortex contained the greatest density of TH-labeled fibers, whereas primary sensory regions were sparsely innervated. Marked heterogeneity of fiber density was also present among the association regions of the frontal, parietal, and temporal lobes. In addition, the laminar pattern of innervation in a given region was correlated with its fiber density. Sparsely innervated regions had labeled fibers only in layer I and sometimes layer VI. In regions of intermediate density, labeled fibers tended to be located in layers I-superficial III and layers V-VI, whereas in densely innervated motor cortex TH-immunoreactive fibers were present in all cortical layers. Comparison of these distribution patterns with those produced by an antiserum directed against dopamine-beta-hydroxylase (DBH), a specific marker of neocortical noradrenergic axons, revealed marked differences. DBH-immunoreactive fibers were observed in some cortical locations where few or no TH-labeled fibers were present. In other regions, the density of TH-immunoreactive processes far exceeded that of DBH-labeled fibers. These findings indicate that nearly all of the immunoreactive fibers revealed by this anti-TH antiserum are dopaminergic. This interpretation was further supported by lesions of the ascending noradrenergic fibers in the brain stem, which reduced DBH immunoreactivity, but not TH immunoreactivity, in neocortex. The distinctive innervation patterns of TH-immunoreactive fibers suggest a functional specialization of the dopaminergic projections to primate neocortex.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008297 Male Males
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004299 Dopamine beta-Hydroxylase Dopamine beta-Monooxygenase,Dopamine beta Hydroxylase,Dopamine beta Monooxygenase,beta-Hydroxylase, Dopamine,beta-Monooxygenase, Dopamine
D006651 Histocytochemistry Study of intracellular distribution of chemicals, reaction sites, enzymes, etc., by means of staining reactions, radioactive isotope uptake, selective metal distribution in electron microscopy, or other methods. Cytochemistry
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012453 Saimiri A genus of the family CEBIDAE consisting of four species: S. boliviensis, S. orstedii (red-backed squirrel monkey), S. sciureus (common squirrel monkey), and S. ustus. They inhabit tropical rain forests in Central and South America. S. sciureus is used extensively in research studies. Monkey, Squirrel,Squirrel Monkey,Monkeys, Squirrel,Saimirus,Squirrel Monkeys
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase

Related Publications

D A Lewis, and M J Campbell, and S L Foote, and M Goldstein, and J H Morrison
January 1992, European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery,
D A Lewis, and M J Campbell, and S L Foote, and M Goldstein, and J H Morrison
June 1994, Neuroscience,
D A Lewis, and M J Campbell, and S L Foote, and M Goldstein, and J H Morrison
September 2008, Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia,
D A Lewis, and M J Campbell, and S L Foote, and M Goldstein, and J H Morrison
January 1994, Cerebral cortex (New York, N.Y. : 1991),
D A Lewis, and M J Campbell, and S L Foote, and M Goldstein, and J H Morrison
October 1988, Brain research,
D A Lewis, and M J Campbell, and S L Foote, and M Goldstein, and J H Morrison
January 1991, Experimental brain research,
D A Lewis, and M J Campbell, and S L Foote, and M Goldstein, and J H Morrison
May 2000, Brain research. Developmental brain research,
D A Lewis, and M J Campbell, and S L Foote, and M Goldstein, and J H Morrison
August 2000, Muscle & nerve,
D A Lewis, and M J Campbell, and S L Foote, and M Goldstein, and J H Morrison
August 1984, The Journal of comparative neurology,
D A Lewis, and M J Campbell, and S L Foote, and M Goldstein, and J H Morrison
September 1994, The Journal of comparative neurology,
Copied contents to your clipboard!