Biomimetic Surfaces Supporting Dissociated Pancreatic Islet Cultures. 2017

Parker L Andersen, and Patrick Vermette
Laboratoire de bio-ingénierie et de biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, J1K 2R1, Canada; Institut de pharmacologie de Sherbrooke, Faculté de médecine et des sciences de la santé, 3001 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada; Research Centre on Aging, Institut universitaire de gériatrie de Sherbrooke, 1036 rue Belvédère Sud, Sherbrooke, Québec, J1H 4C4, Canada.

This study describes a method to screen biomimetic surfaces based on intracellular insulin content of either fully or partly dissociated primary endocrine islet tissue. It is challenging to maintain endocrine pancreatic islets and more so, dissociated ones. Physiological activity of isolated islet cells in vitro declines due to loss of cell-to-cell and cell-to-extracellular matrix interactions. An in vitro model was developed to evaluate specific extracellular binding components potentially affecting islet biology, with the intention to identify in vivo-like peptides promoting survival and function. Synthetic peptides were bound to low-fouling carboxy-methyl-dextran surfaces, effectively presenting defined surfaces while minimizing non-specific interactions. These biomimetic surfaces were screened based on intracellular insulin content of applied mouse primary islet tissue by analysis with an anti-insulin cell-ELISA. Three active biomimetic surfaces were identified, two laminin- (IKLLI and PDSGR) and one cadherin (HAVDI)-derived, which supported adhesion and survival of insulin-containing cultures for 5days, respectively suggesting a benefit from both cell-extracellular matrix and cell-cell interactions. Cells from dissociated islets show progression over 10days on the HAVDI-biomimetic for the insulin immunoreactivity and cell density. The three surfaces did not act additively or synergistically. A favorable reaction to glucose-stimulated insulin secretion on the cadherin-biomimetic indicated the cultures were physiologically functional. This supportive role of biomimetic peptides represents initial progress in defining minimal extracellular binding requirements influencing islet cell physiology. This will influence further optimization of growth surfaces and promote the basic understanding of islet biology. Low-fouling biomimetics are predicted to be applicable to additional diverse culture systems.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D032701 Biomimetics An interdisciplinary field in materials science, ENGINEERING, and BIOLOGY, studying the use of biological principles for synthesis or fabrication of BIOMIMETIC MATERIALS. Mimetics, Biological,Bio-inspired Engineering,Biomimicry Engineering,Biomimicry Science,Bio inspired Engineering,Bio-inspired Engineerings,Biological Mimetic,Biological Mimetics,Biomimetic,Biomimicry Engineerings,Biomimicry Sciences,Engineering, Bio-inspired,Engineering, Biomimicry,Engineerings, Bio-inspired,Engineerings, Biomimicry,Mimetic, Biological,Science, Biomimicry,Sciences, Biomimicry

Related Publications

Parker L Andersen, and Patrick Vermette
January 1977, Cell and tissue research,
Parker L Andersen, and Patrick Vermette
March 1982, Diabetes,
Parker L Andersen, and Patrick Vermette
January 1970, Acta diabetologica latina,
Parker L Andersen, and Patrick Vermette
April 1985, The Australian journal of experimental biology and medical science,
Parker L Andersen, and Patrick Vermette
July 2021, Biosensors & bioelectronics,
Parker L Andersen, and Patrick Vermette
December 1996, European journal of biochemistry,
Parker L Andersen, and Patrick Vermette
May 1979, Science (New York, N.Y.),
Parker L Andersen, and Patrick Vermette
October 2010, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences,
Parker L Andersen, and Patrick Vermette
June 1980, Diabetes,
Copied contents to your clipboard!